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Parameters 

 
Abstract 

 
We introduce DOSE⸻Dynamically Optimized Sequential Experimentation⸻to elicit preference 
parameters. DOSE starts with a model of preferences and a prior over the parameters of that 
model, then dynamically chooses a customized question sequence for each participant according 
to an experimenter-selected information criterion. After each question, the prior is updated, and 
the posterior is used to select the next, informationally-optimal, question. Simulations show that 
DOSE produces parameter estimates that are approximately twice as accurate as those from 
established elicitation methods. DOSE estimates of individual-level risk and time preferences are 
also more accurate, more stable over time, and faster to administer in a large representative, 
incentivized survey of the U.S. population (N = 2; 000). By reducing measurement error, DOSE 
identifies a stronger relationship between risk aversion and cognitive ability than other elicitation 
techniques. DOSE thus provides a flexible procedure that facilitates the collection of incentivized 
preference measures in the field. 
JEL-Codes: C810, C900, D030, D810, D900. 
Keywords: preference elicitation, risk preferences, time preferences, dynamic experiments, 
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1 Introduction

In recent decades, economics has moved away from assuming a “representative agent” and

increasingly recognized the importance of heterogeneity in decision-making (Fagereng et al.,

2020; Bilbiie, forthcoming). Additionally, economists are studying individual-level behavior

in a rapidly expanding range of contexts, fueled by the rise of field experiments, the spread

of lab-in-the-field techniques, and growing access to internet survey panels.1 However, stan-

dard methods hinder obtaining accurate individual-level measures of economic preference

parameters in broad populations, or outside of tightly-controlled laboratory settings. Com-

mon techniques cannot zero in on individual-level differences as they present participants

with the same small number of choice sets. Further, complex elicitation techniques can lead

to noisy estimates, cause participants to rely on heuristics, and bias empirical results.

We develop a technique for eliciting economic preferences—Dynamically Optimized Se-

quential Experimentation (DOSE)—and demonstrate its effectiveness by measuring individual-

level risk and time preferences in the U.S. population. DOSE estimates preference parame-

ters by using Bayesian methods to select an informationally-optimal personalized sequence of

questions for each participant. Two simulation exercises demonstrate that the resulting esti-

mates are more accurate, and can be obtained using fewer questions, than more established

elicitation techniques. We implement DOSE in a representative, incentivized, online survey,

and elicit individual-level measures of risk aversion, loss aversion, and discounting within

a four-minute survey module. DOSE produces more precise estimates more quickly than

other incentivized elicitations of the same preferences. By measuring preferences more accu-

rately, DOSE can identify relationships of substantive importance: DOSE-elicited measures

are more strongly correlated with a range of individual characteristics—including cognitive

1Recent studies have sought to identify the distribution of economic preferences in the population (for
example, von Gaudecker et al., 2011; Falk et al., 2018), measure correlations between different preferences
(Chapman et al., 2023; Stango and Zinman, 2023), understand the stability of preferences over time (Meier
and Sprenger, 2015; Stango and Zinman, 2020; Chapman et al., 2024), relate economic preferences and
psychological traits (Jagelka, 2024), examine relationships between economic preferences and other individual
characteristics (Dohmen et al., 2011; Callen et al., 2014), and identify heterogeneity in behavioral decision-
making (Allcott et al., 2022).

1



ability—and more stable over time than measures from other methods.

Accurate individual-level preference measures are important both for policy and for the

study of preferences. Economists have increasingly turned to qualitative self-assessments of

preferences, as they have found it too difficult to implement “gold standard” incentivized

elicitations in the general population (Schildberg-Hörisch, 2018). DOSE improves on these

qualitative methods by providing parametric estimates of preferences, which can assist pol-

icymakers in calibrating macroeconomic models (Fuster et al., 2021), customizing behav-

ioral interventions (Andreoni et al., 2023), discovering undocumented behavioral regularities

(Chapman et al., forthcoming), and accounting for preference heterogeneity in policy design

(Taubinsky and Rees-Jones, 2018; Aguiar et al., forthcoming).

DOSE improves on widely-used preference elicitation techniques by accounting for incon-

sistent choice, and by selecting a personalized, information-maximizing question sequence for

each participant. The procedure starts with a prior probability distribution over parameter

values and/or models. Based on that prior, DOSE selects a question that will maximize ex-

pected information gain, according to a criterion specified by the experimenter, as described

in Section 2.2. After each question, DOSE then uses a participant’s choice to dynamically

update its beliefs about the participant’s preferences, adjusts the expected informational

value of each possible subsequent question, and selects the most informative question to

ask next. The procedure explicitly models probabilistic choice, and hence obtains accurate

estimates even if participants make mistakes.

Simulations, presented in Section 3, demonstrate that DOSE is more than twice as ac-

curate as two standard methods for eliciting loss and risk aversion—the multiple price list

(MPL; see Andersen et al., 2006, for a review), and a risky project measure (Gneezy and

Potters, 1997). The first simulation uses 140 choices made by each of 120 students (from

Sokol-Hessner et al. 2009 and Frydman et al. 2011). We simulate DOSE question orderings

for these participants, and show that DOSE captures most of the information from all 140

choices with only 20 personalized questions. Then, a parameter recovery exercise, using sim-
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ulated participants, shows that DOSE produces estimates that are at least twice as accurate

as those from alternative elicitation procedures. Moreover, the accuracy is similar even if

the parametric function used to generate the question sequence is misspecified.

We demonstrate the value of DOSE in the field by measuring individual risk and time

preferences in a two-wave incentivized, representative study of the U.S. population (N =

2,000), described in Section 4.1. Our DOSE implementation presents participants with a

sequence of simple binary choices, enabling us to disentangle both loss aversion and time

discounting from utility curvature.2 We give participants ten choices between a lottery and

a sure amount, and then ten choices between payments at different points in time; eliciting

three preference parameters and a measure of choice consistency in less time than the MPL

method takes to elicit a single parameter. Further, the distribution of estimates from DOSE is

much more granular than those from either MPL or risky project elicitations, demonstrating

how the personalized question sequence precisely identifies participants’ preferences.

Our results suggest that imprecise preference estimates may explain low temporal stabil-

ity of preference measures in the literature (Meier and Sprenger, 2015; Mata et al., 2018).

Our DOSE estimates of risk aversion, loss aversion, and discounting, are correlated 0.40–0.47

across a six-month period. In contrast, the correlations for MPL and risky project elicitations

range from 0.24–0.33, consistent with these estimates containing more measurement error

than those elicited by DOSE. Thus, DOSE answers Meier and Sprenger’s (2015, p. 286) chal-

lenge to develop, “A more precise experimental technique for eliciting time preferences...to

make further study of stability.”

DOSE also identifies a stronger pattern of correlations between estimated preferences and

individual characteristics than alternative methods, suggesting that the procedure uncovers

relationships that may otherwise be obscured by attenuation bias. We observe significant

correlations between a range of individual characteristics and our DOSE-elicited estimates—

2A 4-question sequence is sufficient to elicit a measure of risk aversion, a 10-question sequence elicits both
risk and loss aversion, and a 20-question sequence elicits risk aversion, loss aversion, and time preferences.
Questions trees were pre-programmed, and are available upon request.
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including between risk aversion and cognitive ability. In contrast, estimated relationships

between other elicitations and individual characteristics are mixed. For instance, the esti-

mated correlation between cognitive ability and risk aversion ranges from strongly negative

(DOSE), to weakly negative (risky project or MPL elicitations) to weakly positive (a qual-

itative self-assessment from Falk et al. 2018). However, among (only) those participants

DOSE identifies as making consistent choices, estimates from the MPL and risky project

measures are strongly negatively correlated with cognitive ability. This result suggests that

inconsistent choice may explain mixed findings on the relationship between cognitive ability

and risk aversion (Dohmen et al., 2018).

DOSE may also be more effective in identifying relationships between estimates and cog-

nitive ability because it is easier for participants to understand than established incentivized

elicitation methods or qualitative self-assessments. Complex elicitations can lead individuals

to rely on heuristics such as focal value response (FVR)—choosing salient options such as

the top or bottom of lists, the minimum or maximum of continuous response scales (for

example, corners of budget lines), or round numbers, such as multiples of 10 or 100 (see, for

example, Schwarz and Oyserman, 2001; Barrington-Leigh, 2024)—resulting in non-classical

measurement error. Rates of FVR in our survey are much higher for other methods (32–

60%) than for DOSE (less than 3%). Further, FVR is particularly common for participants

with low cognitive ability which may confound estimated correlations between the estimates

from procedures with high FVR and cognitive ability. Qualitative self-assessments of risk

and time preferences are positively correlated with DOSE measures among participants with

high cognitive ability, but not those with low cognitive ability. This is consistent with differ-

ent people having a different interpretation of the same 0–10 scale. As such, experimental

validations of self-assessment measures based on highly-educated participants may not gen-

eralize to broader populations (Bauer et al., 2020; Kosfeld and Sharafi, 2024).

We conclude, in Section 6, with a discussion of potential uses of DOSE. The speed

and accuracy of DOSE facilitate the collection of incentivized preference measures in a wide
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range of settings. The procedure is particularly effective in settings where experimenters have

limited ability to explain complicated elicitation methods, and so it offers an alternative to

qualitative self-assessments of preferences. DOSE can easily be adjusted to investigate other

preference types—such as social preferences—or to investigate other aspects of behavior—for

instance, learning or beliefs. The DOSE procedure thus provides a flexible method that can

assist researchers in tackling a broad range of research questions in both the lab and the

field.

1.1 Related Literature

Our work contributes to two broad literatures: optimal experimental design, and the mea-

surement of economic preferences and their correlates in broad populations. We review these

large literatures only briefly. Relationships between specific prior findings and those in this

paper are included when we discuss those specific findings, or in Appendix A.

Drawing on the initial working paper version of this manuscript (Wang et al., 2010), other

scholars have implemented the DOSE procedure in a range of settings. DOSE has been used

in convenience samples to elicit a variety of preferences, including risk preferences, time

preferences, and preferences for autonomy.3 In particular, Chapman et al. (forthcoming)

uses

DOSE to investigate gain-loss attitudes in the general population.4 It finds that only

around half the U.S. population is loss averse—much lower than in laboratory samples used

in most previous studies. It uses a different survey dataset that includes a longer DOSE

sequence and other, more traditional elicitations of loss aversion. That paper also demon-

strates strong correlations between loss aversion and several behaviors outside of the survey,

3Imai and Camerer (2018) use DOSE to evaluate time preferences on Mechanical Turk, demonstrating how
the procedure can be used to select optimally-informative Convex Time Budgets (Andreoni and Sprenger,
2012). Freundt et al. (2023) develop a two-stage DOSE procedure to elicit intrinsic preferences for autonomy.
Several laboratory studies have implemented a version of the DOSE procedure used in this paper to estimate
risk preferences (Clay et al., 2016, 2017; Krajbich et al., 2017).

4Chapman et al. (2018) both analyzed the performance of the DOSE procedure and presented results
regarding loss tolerance. Based on feedback, we split the two elements into separate manuscripts, and
expanded both considerably.
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including gambling, experience of losses, and stock market investment. This paper, in con-

trast, introduces the DOSE methodology, and demonstrates the advantages of the procedure

relative to more established methods—both in simulations and in a large online survey.

Other methods applying optimal experimental design to preference elicitation have been

proposed since the initial release of DOSE, but none have received significant use in eco-

nomics.5 Cavagnaro et al. (2010, 2013a,b), and Cavagnaro et al. (2016) independently de-

velop the “Adaptive Design Optimization” framework for model discrimination.6 Toubia et

al. (2013) implement a closely related “DEEP” method to study risk and time preferences

in a sample from Mechanical Turk. Drake et al. (2022) develop a “BACE” method, which is

closely related to DOSE, to generate adaptive sequences of menus using “mutual informa-

tion” as their information criterion, and prove some novel convergence properties. However,

none of these procedures have been stress-tested by estimating different types of preferences

across multiple populations, as we do for DOSE.

Our paper also relates to the broader endeavor to understand the relationships between

economic preferences, cognitive ability, and complex preference elicitations.7 Several stud-

ies have concluded that cognitive ability is associated with greater normative rationality

(Frederick, 2005; Burks et al., 2009; Dohmen et al., 2010; Benjamin et al., 2013), but others

have suggested that such results may be confounded by misunderstanding and other mea-

surement issues (Dave et al., 2010; Andersson et al., 2016, 2020). Our results complement

5Optimal experimental design has received greater attention in other fields, particularly in computer
science and statistics. The idea of dynamic designs begins with Wald (1950), and Chaloner and Verdinelli
(1995) provide a useful review of applications in statistics. The idea of optimal experimental design appears
to originate most clearly in Peirce (1967), who described an “economic” theory of experimentation and
applied it to the study of gravity. Optimal designs have been used in many applied fields, including in
neurophysiology (Lewi et al., 2009), psychophysics (Kujala and Lukka, 2006; Lesmes et al., 2006), marketing
(Toubia et al., 2004; Abernethy et al., 2008), and medicine (Müller et al., 2007). A small number of studies
in economics have used optimal experimental design with static, rather than dynamic, experiments (Aigner,
1979; El-Gamal et al., 1993; El-Gamal and Palfrey, 1996; ?). See Moffatt (2007) for a discussion of potential
applications of optimal design to parameter estimation, including the elicitation of risk preferences.

6Their implementations use many more questions than DOSE—80 in Cavagnaro et al. (2016) and 101 in
Cavagnaro et al. (2013a)—making it difficult to use with a representative sample, in which concerns about
attrition in long surveys are paramount.

7The fact that elicitation method can affect preference estimates has been well documented (see, for
example, Crosetto and Filippin, 2016; Pedroni et al., 2017), as have problems with inconsistent choice in
MPLs (Filippin and Crosetto, 2016) and other methods (Hey et al., 2009).
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recent work showing that low cognitive ability is associated with difficulty understanding

complex mechanisms for eliciting beliefs (Schlag and Tremewan, 2021; Burdea and Woon,

2022; Burfurd and Wilkening, 2022) This paper demonstrates that similar issues arise even in

widely-used “simple” incentivized elicitation techniques and qualitative self-assessments, and

may confound estimated relationships with cognitive ability. DOSE offers a simple way to

overcome these difficulties—by providing a rapid, flexible, and easy-to-understand elicitation

procedure that can be implemented in the field.

2 The DOSE Procedure

This section introduces the DOSE procedure from two perspectives: first from the point

of view of participants, then from that of the experimenter. The contrast in perspectives

emphasizes that DOSE is not complicated to participants and expands the design choices

of experimenters’. This naturally leads into a discussion of our specific design and data-

gathering choices.

2.1 The Participants’ Point of View

DOSE is simple from the participants’ point of view, as shown in the examples, in Figure 1,

taken from our implementation.8 The participant is given an explanation of the upcoming

choices, as in Figure 1a. He or she is then given a series of choices, similar to those in Figure

1b to elicit risk preferences, or Figure 1c to elicit time preferences.9

Our DOSE implementation presents participants with binary choices, but the procedure

can easily be adapted to use any question type. We selected binary choices as we expected

them to be relatively simple for participants, particularly since the format—a single question

8This figure includes screenshots from our actual implementation. For screenshots of all the questions used
in this paper, see Appendix F. Full design documents and screenshots can be found at eriksnowberg.com/wep.

9The instructions page appearing at the start of the DOSE module eliciting time preferences is shown in
Appendix Figure F.13.
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Figure 1: Examples of DOSE from a Participant’s Point of View

(a) DOSE Instructions

(b) Sample DOSE Choice in Risk-Loss Module

(c) Sample DOSE Choice in Time Module

with two possible responses per page—is similar to the questions usually used by YouGov.10

As discussed in Section 4.1, we also designed the questions so that calculations are relatively

straightforward. However, DOSE can also be used to choose questions in other formats, such

as Convex Time Budgets Imai and Camerer (2018).

2.2 The Experimenter’s Point of View

DOSE starts with a prior over a set of parameter values, then optimally—according to the

experimenter’s chosen information criterion—selects questions to pinpoint a participant’s

preferences. After a participant answers a question, DOSE updates beliefs using Bayes’ law,

10Hey et al. (2009) find that binary choices are less noisy than other common risk elicitation methods.
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optimally selects the next question, and so on. Consequently, the procedure elicits accurate

parameter estimates with only a few questions.

Because it allows for the possibility that participants make mistakes, DOSE can elicit

more accurate parameter estimates than other common dynamic experimental designs. We

illustrate this by comparing DOSE with a simple partitioning method, in Figure 2.11 Both

methods start with a uniform prior, and offer participants a binary choice. In the first round,

all participants face the same question—Q1 for the partitioning method, or q1 for DOSE.

Beliefs are then updated depending on the participant’s answer, and the next question is

picked optimally given the new beliefs. The key difference between the two procedures is

that a partitioning method successively eliminates ranges of parameter values after each

question. DOSE, in contrast, allows for the possibility that any choice may have been a

mistake, and hence places a positive probability on all parameter values, regardless of a

participant’s earlier answers.

In a partitioning method, a single incorrect choice can cause considerable inaccuracy.

Consider a participant with true parameter θ0, displayed at the bottom of Figure 2. This

participant should choose B in both questions of a partition method. If, however, she

incorrectly chooses A in the first question, her estimated parameter value is constrained to

be less than the median value—regardless of the number of rounds of questions. Errors

early in the procedure thus lead to considerable measurement error. Any error makes it

particularly hard to identify parameter values at the extremes of the distribution.

DOSE, in contrast, can elicit accurate parameter values even if participants make mis-

takes. Even after an initial incorrect choice of a, the posterior distribution places a positive

probability on the true parameter value θ0. As a result, with enough correct answers (and

11Partitioning has been used in psychometrics, typically described as “titration” (a term borrowed from
chemistry) or “calibration.” Partitioning techniques include the iterative MPL (see, for example, Andersen
et al., 2006; von Gaudecker et al., 2011) and the staircase method (Falk et al., 2018). The iterative MPL
presents participants with an initial MPL, and then offers them a refined set of options in another MPL. For
example, if the choice on the first MPL implied a participant’s certainty equivalent for a lottery lay between
$X and $Y, the next MPL would have options in [$X,$Y]. A more complicated variant allows the size of the
step to depend on the sequence of previous answers (for example, Bostic et al., 1990).
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perhaps some more mistakes) in future rounds, an accurate parameter estimate will still be

obtained. Further, the procedure keeps track of the extent of inconsistent choice, which,

as we demonstrate empirically in Section 5.2, provides a valuable measure of participant

behavior.

2.2.1 Our DOSE Procedure for Measuring Risk and Time Preferences

DOSE can be customized for particular research questions. The main objects of choice for

a researcher are the parametric specification(s), the prior distribution over parameters or

models, the set of choices to present to participants, how parameters map to choices—that

is, the structure of possible mistakes—and the information criterion used to select questions.

Our choices for these various facets were made partly on the basis of theory, and partly on

the basis of simulations. The latter is described in the following section. Here, we describe

the major choices we made when implementing DOSE in our online survey—full details can

be found in Appendix B.2.

Utility Function and Priors over Parameters. We elicit risk and loss aversion using

a Prospect Theory utility function with power utility (Kahneman and Tversky, 1979). This

utility function assumes that participants value payments relative to a reference point, which

we assume is zero. The standard S-shaped utility function in Prospect Theory implies that

participants are risk averse over gains and risk loving over losses. A kink in the utility

function at the reference point of zero represents loss aversion. Formally:

u(x, ρi, λi) =


xρi for x ≥ 0

−λi(−x)ρi for x < 0,

(1)

in which λi parameterizes loss aversion, ρi parameterizes risk aversion, and x ∈ R is a mon-

etary outcome relative to the reference point. If λi > 1, then the participant is loss averse.

If λi < 1, then the participant is loss tolerant. An individual with ρi < 1 demonstrates risk

11



aversion over gains and risk love over losses. So that higher numbers indicate greater risk

aversion, we use 1− ρi, the coefficient of relative risk aversion, in tables and figures.

The specification in (1) focuses on accurately estimating loss aversion with as few ques-

tions as possible. As most studies have found limited difference in curvature across the gain

and loss domains (see Booij et al., 2010, Table 1), we impose the same utility curvature

in both domains.12 This improves the accuracy of the estimates of λi as questions are not

selected to separately identify the curvature in both the loss and gain domains.

We model time preferences with quasi-hyperbolic discounting and the power utility func-

tion in (1). If t is the time from the survey date in months, utility is

u(xt, ρi, βi, δi) = βiδ
t
ix
ρi
t , (2)

in which δi > 0 is a discount factor, ρi captures the curvature of the utility function from

(1), and xt is a payment at time t. βi equals 1 for payment in the present (t = 0) and—if an

individual is present-biased—βi < 1 for payment in the future.

We use a joint uniform prior over preference parameters for both question selection and

estimation. The support of the prior is chosen based on the individual estimates obtained

in Section 3.1. That section also shows this prior leads to near-optimal question selection.13

DOSE provides additional flexibility because choices in questions selected by one model

may be used to estimate other models. While researchers must choose a parametric specifi-

cation and prior distribution for data collection, an alternative prior or specification can be

used to estimate parameter values ex post. As DOSE still provides a great deal of informa-

tion about individual preferences, reanalyzing choices with a different prior or parametric

specification allows researchers to obtain accurate parameter estimates, as shown in Sec-

tions 3.1 and Appendix D.3. This feature of DOSE allows researchers to incorporate other

source of information into their DOSE estimates, use different models for different individ-

12Assuming the same curvature across gains and losses also avoids an issue with power utility: different
curvatures mean that estimates of loss aversion depend on scaling (Köbberling and Wakker, 2005).

13In particular, the prior ranges are λ ∈ [0, 4.6], ρ ∈ [0.2, 1.7], µ ∈ [0, 8], δ ∈ [0.2, 1], and β ∈ [0.4, 1].

12



uals, or simply check for the robustness of their results—in Chapman et al. (forthcoming),

for example, we show that the finding of widespread loss tolerance is robust to allowing for

differential utility curvature over gains and losses, and to a series of alternative reference

points proposed in previous studies.

Mistakes and Choice Consistency. An important advantage of DOSE is that it

takes into account the possibility that participants make mistakes. This must be done

through a parametric model. We model the mapping between utility and choices using the

logit function, which has been widely used in both economics and psychophysics due to its

connection with the random utility model.14 For any choice between options o1 and o2 with

V (o1) > V (o2):

Prob[o1] =
1

1 + e−µi(V (o1)−V (o2))
. (3)

The logit function depends both on the utility difference between options o1 and o2 and the

choice consistency parameter µi ∈ R+. The probability of making a mistake—that is, not

choosing an individual’s value-maximizing option—is 1−Prob[o1]. This is decreasing in the

value difference between o1 and o2. This decrease is more rapid when µi is larger, so higher

values of this parameter represent greater consistency in choices.

Information Criterion. In our implementation, DOSE selects each question to maximize

the expected Kullback-Leibler (KL) divergence between the prior and possible posteriors

associated with each answer. That is, the question that is picked at each point is the one

with the highest expected information gain given current beliefs. The KL criterion has been

used widely in the optimal design literature in statistics due to its conceptual simplicity

and grounding in information theory (see Ryan et al., 2016, for a discussion and examples).

Further, this approach leads to consistent and efficient parameter estimates under weak

14Specifically, choice probabilities will be logit if the errors in the random utility model have an Extreme
Value Type I distribution. See McFadden (2001) for a broader discussion of the history of the logit specifica-
tion and its properties. DOSE can easily be implemented with multi-answer questions using a multinomial
logit or alternative probabilistic choice function.
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modeling conditions (Paninski, 2005). However, DOSE can easily be modified to incorporate

alternative information criteria—for example, Imai and Camerer (2018) use DOSE with the

EC2 criterion to investigate time preferences.15

Formally, consider a finite set of possible parameter vectors θk for k = 1, ..., K, where each

θk = (ρk, λk, δk, µk) is a combination of possible values of the parameters of interest.16 Each

θk has an associated probability pk of being the correct parameters. In the first question,

these probabilities are the priors chosen by the experimenter; they are then updated in each

round according to the participant’s answers. The expected Kullback-Leibler divergence

between the prior and the posterior when asking question Qj is:

KL(Qj) =
∑
k≤K

∑
a∈A

log

(
lk(a;Qj)∑

j∈K pjlj(a;Qj)

)
pklk(a;Qj) (4)

where a ∈ A are the possible answers to the question, and lk(a;Qj) is the likelihood of answer

a given θk—in our implementation this is determined by the logit function in (3). DOSE

selects the question that maximizes KL(Q), the participant answers it, model posteriors are

updated, the question Qj that now maximizes KL(Q) is selected, and so on.17

Incentive Compatibility. Dynamic designs, including DOSE, are not strictly incentive

compatible—in theory, they can be “gamed”—but this is unlikely to be important in practice.

Theoretically, a highly sophisticated individual could misrepresent their true preferences in

early questions to obtain more generous offers in future questions. For example, participants

could misleadingly say they prefer a lottery to a sure amount in the first question in order to

increase the magnitude of the sure amounts offered in the future. However, there are many

15The EC2 acronym comes from the description “Equivalence Class Edge Cutting” Golovin and Krause
(2011), which has been favored in computer science as it has a provable worst-case “cost” bound—that is,
the number of choices needed to approximate perfect identification. In addition, the objective function is
adaptively submodular, which can economize on real-time computation by re-using previous computations.

16We assume a finite space of parameters for computational ease. The KL divergence here is slightly
different from that in El-Gamal and Palfrey (1996). Their variant maximizes the distance between posteriors
(information) obtained under different models, whereas ours maximizes the information about parameters.

17We restricted the procedure to only consider questions that had not yet been asked of that participant.
In order to improve the estimate of µ, the procedure would eventually ask the same question multiple times.
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practical and empirical reasons to think that gaming is rare in practice, and will not under-

mine preference elicitation. Most convincingly, Ray et al. (2012) directly test the importance

of gaming in experiments about binary risky choice. In particular, they compare a baseline

condition with a condition in which the possibility of gaming was explicitly described. Few

participants attempted to manipulate the algorithm, and those that did so were unable to

find an effective method, and the distributions of best-fit risky choice models did not differ in

the control and explicitly-instructed treatment. Further, if participants were attempting to

manipulate the procedure then they should behave differently in earlier rounds (when there

is an incentive to act strategically) than later rounds (when there is not)—but they find no

evidence that this was the case. See Appendix B.1 for a more detailed discussion.

Further, DOSE can easily be adapted to be incentive compatible, but evidence collected

during piloting suggested that doing so is unlikely to lead to different results for our imple-

mentation.18 Specifically, we tested whether using an incentive-compatible payment method

affected estimates of risk aversion elicited using a 10-question DOSE procedure (see Wang

et al., 2010, for details). Specifically, 23 participants were paid according to a randomly-

selected question (as in our online survey), and 22 were paid using an incentive-compatible

procedure. In this procedure, the DOSE parameter estimates were used to project each

participant’s choice onto an unanswered question, which was then paid.19 The distribution

of estimates was similar across the payment methods, with no statistically significant differ-

ence in means (p-value= 0.40). Johnson et al. (2021) suggest an alternative incentive system

(“PRINCE”) whereby the actual question chosen for payment is randomly selected from all

possible questions after the personalized question sequence is completed. If that question has

already been answered, the answer determines the payment. If not, the participant answers

18Incentive-compatible designs also have important drawbacks, and care would be warranted in implement-
ing them outside of the laboratory. They are complicated to explain, and there may be a trade-off between
the incentive for truthful response and the strength of incentives. The two incentive-compatible payment
procedures discussed below, for instance, mean that each question has a lower probability of influencing the
final payoff, relative to paying one question at random. Simple adjustments to DOSE can be made to reduce
the likelihood of manipulation—for instance, in our survey, we induced additional variation in the questions
chosen by preventing the highest possible prize from appearing in consecutive questions.

19This procedure was suggested by Ian Krajbich, and implemented in Krajbich et al. (2017).
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it, and this answer determines the payoffs. Thus, concerns about strategic manipulation do

not preclude the use of DOSE.

3 Performance of DOSE versus Current Methods

Before presenting the results of our representative survey, we demonstrate that DOSE works

well in two sets of simulation exercises. First, we simulate the DOSE question selection

procedure using the choices of participants in two laboratory experiments that used ques-

tions similar to those in our DOSE implementation. A 20-question DOSE procedure ob-

tains parameter estimates that are, on average, quite close to parameter estimates after 140

randomly-ordered questions. Second, we use simulated participants to show that, in the

presence of mistakes or inconsistency, DOSE recovers parameter estimates that are at least

twice as accurate as standard elicitations used to measure risk and loss aversion.

3.1 Simulating DOSE with Laboratory Data

The first simulation exercise demonstrates the benefits of DOSE’s personalized question

sequence. We use data from 120 student participants in two prior laboratory experiments.20

In each experiment, participants were given the same set of 140 binary choices from the same

two types of questions described in the prior section. In our simulation, we optimally order

these question for each participant using DOSE. After DOSE selects a question, we provide

it with the answer the participant gave in the experiment. The procedure then updates the

probability distribution over parameters, selects the next question, and so on. This allows

us to compare, question by question, the inaccuracy—the absolute distance from the true

parameter value as a percentage of the true value—of DOSE’s estimates with those elicited

2090 participants come from Frydman et al. (2011) and 30 from Sokol-Hessner et al. (2009). We attempted
to compare the performance of DOSE using Maximum Likelihood Estimation (MLE), the method in Sokol-
Hessner et al. (2009) and Frydman et al. (2011). However, as reported in Appendix C.3, we were unable to
obtain MLE estimates for a large portion of the sample. The MLE estimates that were obtained were less
accurate—relative to the estimate after 140 questions—than those obtained from Bayesian estimation.
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Figure 3: Optimal question selection rapidly leads to accurate estimates.
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Notes: Based on data from Sokol-Hessner et al. (2009) and Frydman et al. (2011). Each line shows the
inaccuracy of Bayesian estimates (with uniform initial prior) obtained after each question, starting at question
10, under different orders. “Optimal Prior” and “Uniform Prior” refer to DOSE question selection using
corresponding priors. “Random” orders questions randomly. To prevent a particularly extreme random
ordering from skewing our results, this line is based on an average over 100 different random orderings.

by a random question ordering. As we do not have access to true parameter values, we

substitute the values one would obtain using all 140 choices.

A 20-question DOSE sequence provides a similar amount of information as about 50 ran-

domly ordered questions, as shown in Figure 3.21 The DOSE estimates of both risk and loss

aversion are consistently closer to the final parameter estimate, indicating that the procedure

provides accurate estimates considerably faster than selecting questions at random. After 20

questions, the DOSE estimates are almost twice as close to the final estimate as those under

a random question ordering (12% vs. 21–22%). The DOSE estimates are also more highly

correlated with the final estimates (see Appendix Figure C.1), an important feature when

seeking to identify correlations between preferences and other population characteristics.22

These simulations also show that using the uniform prior is close to optimal for question

21For loss aversion, 45 randomly-ordered questions are needed to be as close to the final estimate as 20
DOSE questions. For risk aversion, 55 questions are required. Imai and Camerer (2018) reports similar
results relative to fixed or random orders when using DOSE to estimate time preferences.

22Further, the average benefits we estimate are not limited to the particular distribution of preferences we
observe in the laboratory. The DOSE estimates rapidly converge to the final estimate for any given λ and ρ
we consider in our simulations, as shown in Appendix C.
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selection. We compare the performance of DOSE question selection using a uniform prior

to that using an optimal prior constructed from the distribution of the estimates after 140

questions. To focus on the question selection impacts of the prior, we estimate the parameter

values using a uniform prior in both cases. As shown in Figure 3, the accuracy is similar

whether using the optimal or uniform prior.

3.2 Parameter Recovery Study

Even when participants make mistakes, DOSE produces estimates that are about twice as

accurate as traditional risk and loss aversion elicitation mechanisms. We demonstrate this

with a parameter recovery study (or Monte Carlo simulation). This is conducted with an

entirely simulated dataset that allows us to both know and control the true parameters

governing (simulated) participant behavior. Appendix D.2 provides full details.

We evaluate the relative (in)accuracy of DOSE and two other common risk elicitation

procedures, using 10,000 simulated participants with power utility given in (1), who make

binary choices probabilistically according to (3). For each of these participants, a set of

parameter values (ρi, λi, and µi) are drawn from the posterior distribution obtained from

the 120 laboratory participants in the previous subsection. We obtain DOSE estimates by

running 10- and 20-question DOSE procedures for each simulated participant, determining

the answer to each question according to their parameters.

As a benchmark for DOSE, we also allow our simulated participants to make choices

in two other common risk elicitation methods: investment in a risky project (Gneezy and

Potters, 1997) and a double MPL (Andersen et al., 2008; Andreoni et al., 2015)—we cannot

perform a similar task for self-reported measures as they do not produce parametric esti-

mates.23 In the risky project, participants are given an endowment that they can partially

invest in a lottery which pays a 3x return with 40% probability. In the double MPL, par-

ticipants complete two MPLs, each offering a choice between a fixed 50/50 lottery and a

23We also simulate a Lottery Menu (Eckel and Grossman, 2002) elicitation procedure, and observe, if
anything, slightly worse performance compared to the risky project measure—see Appendix D.1 for details.
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Table 1: DOSE produces more accurate estimates than current techniques.

Spearman Rank
Average Correlation with

Inaccuracy True Value

Risk Aversion
DOSE 10 question 21% 0.66

DOSE 20 question 15% 0.79

Multiple Price List 37% 0.45

Risky Project 36% 0.40

Loss Aversion
DOSE 10 question 21% 0.86

DOSE 20 question 15% 0.91

Multiple Price List 36% 0.64

Notes: Inaccuracy is the absolute distance from the true parameter value as a percentage
of the true value.

series of ascending sure amounts. The first MPL—which identifies risk aversion—offers a

lottery over gains ($0 and $10), while the second—identifying loss aversion—offers a lottery

between a gain of $10 and a loss of $10. In both cases, we define a probability distribu-

tion over participants’ choices by assuming that they consider options until they choose to

“switch” from one column of options to the other in the MPL, or select an amount of points

to invest in the risky project. Choices are made using the same logit choice function as in (3).

This probability distribution is used to calculate the expected inaccuracy of the parameter

estimate for each simulated participant.

The estimates of risk and loss aversion from DOSE are approximately twice as accurate

as those from the other elicitation procedures, as shown in Table 1. After 20 questions,

DOSE obtains estimates of risk and loss aversion that are, on average, within 15% of the

true parameter value. The average inaccuracy of the MPL and risky project procedures, in

contrast, is at least 35%—much higher than even a 10-question DOSE procedure. Further,

the improvement in accuracy from using DOSE is similar when the utility function used in

the question selection procedure is misspecified—see Appendix D.3.
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Figure 4: DOSE is more accurate than other methods at all levels of choice consistency.
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Notes: The figure displays estimates obtained from repeating the simulation procedure described in Ap-
pendix D 19 times, with each repetition fixing µ at different ventiles of the distribution estimated from
asking the full set of 140 questions to the 120 participants discussed in the previous subsection.

DOSE produces more accurate estimates than both other procedures, regardless of par-

ticipants’ level of choice consistency (µ), as shown in Figure 4. This figure repeats the

parameter recovery analysis described above, but assigns all simulated participants the same

level of choice consistency, µ. We then vary µ across ventiles of the population distribution.

The 20-question DOSE procedure always provides the most accurate estimates, but even a

short 10-question procedure performs better than either the MPL or risky project, except

when µ ≈ 0, meaning that choice is close to random.24 DOSE performs particularly well

compared to these other procedures in recovering accurate estimates for those below median

choice consistency, suggesting that it may be particularly valuable in settings where experi-

menters may have limited experimental control, or among participants most likely to make

mistakes.

The high accuracy of the DOSE estimates also leads to higher correlations with the true

parameter values than the other two procedures (Column 2 of Table 1). Thus, DOSE is

less likely to miss associations between economic preferences and other characteristics due to

24For very low values of µ, the simulation suggests that the MPL will be unable to estimate λ for around
half of participants due to choices that are First Order Stochastically Dominated—see discussion below.
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attenuation bias, as we will see in Section 5.2. The correlation between the true risk aversion

parameter and the DOSE estimate is 0.79, compared to 0.45 with the MPL estimates and

0.40 for the risky project. The DOSE procedure produces correlations above 0.85 between

estimated loss aversion and the true values, even after a 10-question sequence.

Unlike the MPL, DOSE is able to elicit loss aversion estimates even when participants’

choices violate First Order Stochastic Dominance (FOSD).25 As DOSE accounts for the

possibility that a participant’s choice is a mistake, the procedure can always recover param-

eter estimates. In the double MPL, on the other hand, participants may erroneously make

choices on the second MPL (used to elicit loss aversion) that are First Order Stochastically

Dominated given their choices on the first MPL (used to elicit risk aversion). This prevents

estimation of the loss aversion parameter. In our simulation, the MPL could not recover

estimates for 11% of participants, increasing to more than 36% of participants in the bottom

decile of choice consistency. FOSD choices may be even more problematic in practice, as they

are more common among certain subgroups of the population, and hence may lead to biased

estimates of population parameters. Implementing a double MPL in a representative survey,

Chapman et al. (2023) are unable to recover loss aversion estimates for 47% of participants

falling in the bottom quartile of cognitive ability, compared to only 30% of participants in

the top quartile. High cognitive ability is associated with more loss aversion (Chapman et

al., forthcoming), so this problem may lead to an over-estimate of the extent of loss aversion

in the population.

Our simulations likely understate the actual amount of noise in MPL choice data. We can

estimate the amount of additional noise in real-world choice data by comparing simulated

and real responses for three MPLs from Chapman et al. (2023)—the double MPL discussed

previously and an additional risk aversion MPL.26 The proportion of FOSD responses in the

loss aversion MPL is much lower in the simulation than the real data: 20% rather than 37%.

25Difficulties with estimating preference parameters due to inconsistent choice are not limited to MPL
elicitations. For instance, Booij et al. (2010) drop ∼40% of participants due to FOSD violations in a long
sequence of binary choices.

26Full details of the simulations are reported in Appendix D.

21



Further, the correlation between the certainty equivalents from the risk aversion MPLs—

which is lower in the presence of more measurement error—is higher in the simulation: 0.73

vs. 0.69.

The simulations appear to underestimate measurement error because they do not account

for participants’ use of heuristics, such as focal value response (FVR).27 If individuals find a

set of responses, such as a numerical scale, complex, they may simplify it to a small number

of salient or rounded points. For MPLs, FVR may lead participants to consider only rows

at the top, middle, and bottom of an MPL as possible options—we observe 36% of people

make such choices in our survey, versus 25% in our simulation. Thus, our simulations may

actually understate the relative advantages of DOSE.

4 DOSE in a Representative Online Survey

This section shows our results from implementing DOSE over two waves of an online in-

centivized survey of the general population. We first introduce the survey data and then

demonstrate how the DOSE 20-question module rapidly identifies considerable heterogeneity

in both risk- and time-preferences. The DOSE-elicited estimates are more stable over time

than those obtained from other elicitation procedures, consistent with DOSE reducing mea-

surement error. Analysis of survey behavior suggests DOSE was simple to understand, and

that the DOSE estimates are not significantly affected by possible survey fatigue or other

sources of inattention.

4.1 Data

We implement DOSE in two waves of an incentivized online survey of the U.S. population

(N = 2, 000).28 The survey collected a number of behavioral and demographic measures

27See Andersen et al. (2006) for a discussion of possible framing effects in MPLs.
28Limitations in YouGov’s online platform precluded using DOSE to choose questions in real time. Instead,

as discussed in Appendix B, the question tree was mapped out in advance, and used to route participants
through the survey accordingly. Other studies have implemented DOSE in the laboratory (Clay et al., 2016),

22



from participants, who were recruited from YouGov’s proprietary panel. The two waves

asked exactly the same questions of the same participants, about six months apart.29 Unless

otherwise stated, we report results from the first wave.

The behavioral measures in this paper were all incentivized: at the end of the survey,

two survey modules were selected at random for payment. All outcomes were expressed

in YouGov points, an internal YouGov currency used to pay panel members, which can be

converted to U.S. dollars using the approximate rate of $0.001 per point.30 To enhance the

credibility of these incentives, we took advantage of YouGov’s relationship with its panel,

and restricted the sample to those who had already been paid (in cash or prizes) for their

participation in surveys. The average payment to participants (including the show-up fee)

was $9 (9,000 points), which is approximately three times the average for YouGov surveys.

The median completion time of the first wave was 40 minutes. We convert points to dollars,

using the exchange rate above, when estimating parameter values.

Participants were asked two, 10-question, DOSE modules:

DOSE Risk Preference Module The first DOSE module elicited risk and loss aversion.

Participants were given 10,000 points and offered a sequence of ten binary choices between

a 50/50 lottery and a sure amount. We selected the lotteries and sure amounts in order to

make the choices particularly simple to understand—all lotteries contain 50% probabilities

of different payoffs, and there is always a zero involved in the choice, making expected value

calculations relatively straightforward. Specifically, two types of lotteries were used. The

on Amazon’s Mechanical Turk (Imai and Camerer, 2018), and on Prolific (Freundt et al., 2023).
29The first wave was conducted by YouGov between March and April 2015, and the second wave between

September and November 2015. The attrition rate between the two waves of ≈25% is lower than most online
surveys, due to YouGov’s panel management and the relatively large incentives we offered. To generate
a representative sample, YouGov randomly draws people from various Census Bureau products, matches
them to members of their panel on observable characteristics, and then provides sample weights to account
for differential response rates across sub-populations. We use these weights throughout the paper. This
procedure generates better representative samples than traditional probability sampling methods with non-
uniform response rates (Pew Research Center, 2016, YouGov is Sample I).

30The conversion from points to awards can only be done at specific point values, which leads to a slightly
convex payoff schedule. This convexity does not appear to alter participant behavior—see Chapman et al.
(forthcoming), especially Online Appendix C.6, for a detailed discussion.
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first had a 50% chance of 0 points, and a 50% chance of winning a (varying) positive amount

of points (of up to 10,000). The second had a 50% chance of winning an amount up to

10,000 points, and a 50% chance of a loss of up to 10,000 points. The second type of lottery

was always paired with a sure amount of 0 points. The first four questions were restricted

to include only the first lottery type, allowing us to obtain a precise estimate of ρ before

moving on to estimate λ, and providing a standalone 4-question risk aversion measure.

DOSE Time Preference Module The second DOSE module elicited discount rates,

and refined estimates of the curvature of the utility function. Participants were offered a

sequence of ten binary choices between a lower amount of points at an earlier date (either

the day of the survey, or in the future) or a higher amount at a later date (up to 90 days in

the future). The maximum payment in each question was 10,000 points.

We compare DOSE to methods that vary both in terms of complexity and whether they

are incentivized—using the typology of Charness and Viceisza (2016), we include measures

that are “incentivized complex” (MPLs), “incentivized simple” (risky project), and “hypo-

thetical simple” (qualitative self-assessments).

Risk Aversion MPLs Two MPLs asked participants to choose between a fixed 50/50

lottery and a series of ascending sure amounts. The row in which the participant first chose

the sure amount identified a range of possible certainty equivalents for the lottery—we use

the midpoint of this range. There were two MPLs of this type: the first had a 50/50 lottery

over 0 and 10,000 points, the second, a 50/50 lottery over 2,000 and 8,000 points.

Risky Project (Gneezy and Potters, 1997) Participants were endowed with 2,000

points that they could keep or invest in a risky project. With 40% probability, the risky

project returned 3 times the amount invested, and with 60% probability, the investment was

lost. The percentage of the endowment a participant kept measures risk aversion.

24



Risk Preference Self-Assessment Participants were asked to report their willingness to

take risks on a scale of 0 to 10, using the qualitative risk question introduced in Falk et al.

(2023) and incorporated in Falk et al. (2018)’s Global Preference Survey.31

Time Preference MPLs Two MPLs elicited time preferences. The first elicited the

amount of points that the participant valued the same as 6,000 points in 45 days. The

second elicited the amount of points in 45 days that the participant valued the same as 6,000

points in 90 days. The row in which a participant first chooses to receive money today (rather

than in the future) identifies a range of possible discount factors—we use the midpoint of

this range. Responses are top-coded to have the same support as the DOSE prior.

Time Preference Self-Assessment Participants were asked to report how likely they

are to postpone tasks on a scale of 0 to 10, using a qualitative time preference question

taken from the survey in Falk et al. (2018).32 We code the question so that higher means

less likely to postpone, and thus indicates a higher δ and/or β.

Cognitive Ability The survey measured cognitive ability using a set of nine questions.

Six questions were from the International Cognitive Ability Resource (ICAR, Condon and

Revelle, 2014): three were similar to Raven’s Matrices, and the other three involved rotating

a shape in space. We also administered the Cognitive Reflection Test (CRT; Frederick, 2005):

three arithmetically straightforward questions with an instinctive, but incorrect, answer. Our

cognitive ability score was the sum of correct answers to these nine questions (see Chapman

et al., forthcoming, for details).

31Specifically, participants were asked, “How do you see yourself: are you a person who is generally willing
to take risks or do you try to avoid taking risks?” We slightly adapted the wording from the original
translation from German reported in Falk et al. (2023) to make the question sound more natural.

32Specifically, participants were asked how well the statement, “I tend to postpone things even though it
would be better to get them done right away” described them as a person. This question is not part of the
validated preference module in Falk et al. (2023), and it is unclear how it would map onto standard models
of time preference. As it involves only two points in time (“right away” and “postpone”), an increase in
“postponement” can be rationalized by a decrease in either δ or β in (2).
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Figure 5: DOSE rapidly identifies heterogeneity in risk aversion.
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in the initial prior (top-left) and after further questions from the DOSE questions sequence. Initially, every
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4.2 Individual-Level Measures of Risk and Time Preferences

The DOSE procedure elicited individual-level measures of risk aversion (1−ρ), loss aversion

(λ), and time discounting (δ), as well as a measure of choice consistency (µ), within a survey

module that took participants, on average, 3 minutes and 20 seconds to complete (including

instructions).33 This was approximately one-third faster than the time taken to complete the

first MPL module on the survey (4 minutes and 25 seconds), which elicited only a measure

of discounting.

The DOSE procedure quickly identifies considerable heterogeneity in risk preferences

across the general population, as shown in Figure 5. The figure plots the cumulative distri-

bution functions of the DOSE estimates of risk aversion (1−ρ) at various points of the DOSE

sequence. At the start of the question sequence, shown in the top-left panel, every partici-

pant is assigned the same parameter value (specifically, the average of the initial prior). The

33We use median response times, as a small number of very slow respondents dominate estimates of means.
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procedure then splits the sample into two, based on the answer to the first question (second

panel), into four after two questions (third panel), and so on. Strikingly, the procedure ob-

tains a great deal of information after just four questions—77% of the distance between the

initial prior and the final estimates has been achieved at this point.34 Further, as we discuss

in Section 5.1, the DOSE estimates from this 4-question risk preference elicitation—elicited

in just 68 seconds, on average—are correlated with cognitive ability, suggesting that even a

very short sequence of optimally-selected questions isolates useful information.

The DOSE procedure identifies greater heterogeneity in both risk aversion and time

discounting than other elicitation methods, as shown in Figure 6. The left-hand panel shows

that the distribution of estimated risk aversion from DOSE is less lumpy than that elicited

by either MPLs or the risky project measure. The middle panel compares the distribution of

the exponential discount factor, fixing β = 1 for all participants, obtained from DOSE and

from two MPLs. Conceptually, DOSE improves on the MPL measures because it accounts

for variation in utility curvature. Moreover, in the MPLs, a majority of participants made

choices indicating no discounting (δ = 1). These choices are consistent with participants

being attracted to focal responses in the MPLs, an issue we discuss further in Section 5.3.

The data collected by DOSE allow us to investigate alternative functional forms for time

preferences, as shown in the right-hand panel of Figure 6. This panel presents the results from

estimating the discount function in (2), with β no longer fixed. Again, we see considerable

heterogeneity. However, we could not estimate a β parameter from the MPL module due to

the similarity of response patterns across the two MPL elicitations. This finding suggests

that results in previous studies indicating no present bias when using monetary rewards

could, at least in part, be an artifact of the elicitation method—in particular, the tendency

for participants to cluster at particular values. It has been suggested that apparent present

bias could reflect payment risks rather than hyperbolic discounting (Andreoni and Sprenger,

34We measure the distance between the distribution using the “Earth-mover’s distance” (also known as a
Wasserstein metric of order 1). Intuitively, this measure calculates the minimum amount of “work” needed
to move from one distribution to another.
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Figure 6: DOSE identified more variation in risk and time preferences than other elicitation
techniques.
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2012). However, in our results, the presence or absence of present bias is determined by the

elicitation type, as any perceived payment risk is the same across all our elicitations.35

Our findings regarding loss aversion, discussed in detail in Chapman et al. (forthcoming),

demonstrate how the DOSE question selection algorithm can lead to unexpected findings.

The main finding of that paper is that only around 50% of the U.S. population is loss averse—

a result we did not anticipate when launching our initial survey. However, because DOSE’s

prior allowed for values of λ < 1, and the set of possible questions included many that

allowed λ < 1—specifically choices between $0 for sure and lotteries with negative expected

value—we were also able to identify “loss tolerant” individuals. Earlier studies, in contrast,

tended to offer all participants the same limited set of questions, so were not well designed

35Andreoni and Sprenger (2012) find limited evidence of present bias when using either a double MPL
method or Convex Time Budgets (CTBs). Participants also tend to choose potentially focal values in
CTBs—in their experiment, 70% of all choices were focal values (corner choices), and 37% of participants
chose a focal value in every choice. See Chakraborty et al. (2017) and Imai and Camerer (2018) for detailed
discussions of corner choices and other evidence of inconsistent behavior within CTBs.
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to identify “surprising” outcomes. For example, none of 56 lotteries offered to participants

by von Gaudecker et al. 2011, included negative expected values.

4.3 Within-person Stability of Economic Preferences

The within-person stability of the DOSE estimates of risk and time preferences is higher

than other incentivized behavioral elicitations, consistent with the fact that DOSE reduces

measurement error in parameter estimates. The correlation of DOSE estimates within-person

across survey waves was 0.40 (s.e. = .04) for loss aversion (λ), 0.44 (.04) for risk aversion

(ρ), and 0.47 (.05) for discounting (δ), as reported in Chapman et al. (forthcoming). The

correlation of the ρ parameter estimated with choices from just the first four questions, 0.44,

was similar to that after 20 questions. This reflects the fact that much of the information

about that parameter was elicited in the first four questions, as shown in Figure 5.

Established incentivized elicitation methods produce estimates with significantly lower

over-time stability than DOSE. The risky project measure had inter-temporal stability of 0.33

(.04), and the stability of our MPL measures was even lower—the inter-temporal correlations

of choices across two risk MPLs were 0.29 (.04) and 0.26 (.04), and in two time preference

MPLs were 0.28 (.06) and 0.20 (.06). We also find similar magnitudes of correlations for a

broader range of risk elicitations in Chapman et al. (2024). These findings are consistent

with our earlier results indicating higher measurement error in MPLs.

The over-time correlations of the DOSE estimates are also higher than those found

with established incentivized elicitation methods in previous studies (see discussion in Ap-

pendix A). Meier and Sprenger (2015) report correlations over one year of 0.36 for present bias

and 0.25 for discounting parameters among 250 low- to middle-income Americans. Stango

and Zinman (2020) study a more representative sample using hypothetical measures, and

report rank-stability of patience (0.29) and risk aversion (0.38). Notably, the correlations of

DOSE estimates are on the high-end of prior results even when compared with studies in

more controlled laboratory environments: Frey et al. (2017) report an average correlation
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of 0.46 across eight behavioral risk measures (including an MPL) among a sample of 107

adults, while Gillen et al. (2019) find an inter-temporal correlation of 0.32 for each of two

risk MPLs, and 0.36 and 0.47 for two risky project questions in a sample of 786 Caltech stu-

dents.36 This comparison suggests that DOSE obtains similarly low levels of measurement

error in an online survey as existing methods do in more controlled environments.

Our findings suggest that limitations of established elicitation methods may, at least in

part, explain why incentivized preference measures tend to have lower over-time correlations

than self-reported measures. The self-reported measures in our survey have higher intertem-

poral stability than the incentivized elicitations—the correlation of the self-reported risk

measure is 0.58 (.04), while that of self-reported time preferences is 0.69 (.03). This pat-

tern is consistent with previous findings in the literature. Mata et al. (2018) carry out a

meta-analysis and find that self-reported risk measures have over-time correlations of around

0.5 over periods of up to ten years, whereas for lottery-based measures (such as those we

examine) correlations are on average around 0.2. Chapman et al. (2024) observe a similar

pattern across a wider range of preference domains, including the measures discussed here.37

Our findings suggest that measurement error in established elicitation methods may lead to

the under-estimation of the over-time stability of economic preferences.

4.4 Survey Fatigue and Question Complexity

Behavior in the survey provides evidence that DOSE works effectively in practice. The fact

that, as discussed above, DOSE was relatively quick to complete suggests that participants

did not struggle to understand the questions offered. Further, an individual DOSE question

took 7.2 seconds to complete on average, similar to the time taken to answer the text-based

36Three papers have studied stability using incentivized elicitations in small laboratory samples over
lengthy time periods. Levin et al. (2007) (N = 62) reports over-time correlations of 0.29 for risk-taking
over gains, and 0.20 for differential risk-taking between the gain and loss domain. Lönnqvist et al. (2015)
(N = 43) reports a within-subject correlation of 0.21 for an MPL risk measure across a year. Kirby (2009)
(N = 46) reports correlations of 0.63–0.71 for a discounting measure.

37Preuss (2021) reports a similar magnitude of over-time correlations for self-reported patience (0.50) and
impulsiveness (0.44) over a five-year period in the German SOEP.
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qualitative risk measure (8.8 seconds)—consistent with binary choices being relatively simple

to understand. However, one may worry that these fast responses reflect participants failing

to pay attention, particularly after receiving a long sequence of questions. We investigate

this possibility by examining behavior within the DOSE module, comparing DOSE estimates

online versus those obtained in the laboratory, and exploring possible order effects.

Participants’ behavior during the DOSE modules does not appear to be affected by survey

fatigue, either within the DOSE module or across the survey as a whole.38 At each point

of the question sequence, DOSE’s prior has an alternative that it “believes” the participant

is more likely to choose. We would expect participant fatigue to cause them to make more

random, and thus, “surprising” choices later in the question sequence. In fact, as we see

in Appendix Figure E.2, the proportion of surprising choices is lower later in the module.

Further, interrupting a 20-question DOSE sequence with a randomly-located page break does

not increase the level of surprise—suggesting that the sequential nature of the procedure does

not affect participants’ choices. We also see that the distribution of DOSE estimates is similar

regardless of where DOSE appeared in the survey (Appendix Figure E.1), or how quickly

participants completed the survey or the DOSE module (Appendix Figure E.3). Thus, it is

unlikely that responses are affected by either fatigue or inattention as a participant moves

through the survey.

A comparison of the estimates obtained from different DOSE implementations suggests

that participants’ behavior is not distorted by the online survey environment, or by learning

from repeated exposure to DOSE. DOSE produces estimates in line with previous studies

in student populations, whether implemented in the laboratory or in an online survey, as

discussed in Appendix A.1. Second, behavior is similar when participants are presented

with multiple DOSE implementations, either across the two waves of our survey (see Ap-

pendix A.1), or within a single survey (see Chapman et al., forthcoming). Thus, while we

cannot directly examine participants’ understanding of the procedure, any learning during

38We present similar exhibits to those reported in this paragraph, using a different dataset, in Chapman
et al. (forthcoming, Figure 11 and Appendix C.5).

31



the survey module—either due to initial confusion, or recognition that the procedure is

adaptive—does not appear to significantly affect estimated parameters.

The results in this section demonstrate that DOSE quickly elicits multiple preference

parameters, appears simple to understand, and can identify considerable heterogeneity across

a representative sample. Moreover, DOSE preference estimates are relatively stable over

time, consistent with the simulation evidence that the procedure reduces measurement error.

In the next section, we investigate the correlations between our preference estimates and

cognitive ability. This analysis provides further evidence that DOSE reduces measurement

error, and demonstrates the importance of accurate estimates of individual-level preference

parameters.

5 Economic Preferences and Cognitive Ability

Obtaining highly accurate estimates of individual preferences may help researchers uncover

relationships that would otherwise be obscured by measurement error. In this sense, DOSE is

similar to a more powerful microscope that enables scientists to see fine details more clearly.

In this section, we first analyze the relationship between cognitive ability and the DOSE-

elicited parameter estimates. In line with prior literature, we find that higher cognitive ability

participants are both more patient and exhibit greater choice consistency. Our results also

suggest that mixed results in previous studies regarding the relationship between cognitive

ability and risk aversion may be explained by inconsistent choice. Using DOSE, which

directly accounts for inconsistent choice, we observe a strong negative correlation between

cognitive ability and risk aversion. In contrast, we recover a correlation between MPL-

based measures of risk aversion and cognitive ability only when excluding participants who

DOSE estimates to have below-median choice consistency (µ). We then show that low

cognitive ability participants appear particularly likely to rely on heuristics when responding

to traditional risk elicitations, further demonstrating the value of the simple binary choices

32



used by DOSE.

5.1 Correlates of Economic Preferences

We observe robust correlations between cognitive ability and all of our DOSE-elicited pa-

rameter estimates—both risk and time preferences, as well as choice consistency. More

cognitively able individuals tend to be less risk averse, more loss averse, more patient, and

make more consistent choices than those with lower cognitive ability. These correlations

are robust to controlling for other individual characteristics, and for allowing for potential

misspecification of the utility or error function.

Table 2 reports correlations between our four DOSE-elicited parameter estimates and a

range of individual characteristics. For each preference parameter, we first report univariate

correlations with each characteristic, and then report multivariate regressions that include all

characteristics simultaneously. The results for risk aversion and loss aversion reproduce find-

ings reported in Chapman et al. forthcoming, while those for patience and choice consistency

are presented in this paper.

The correlations in Table 2 are largely consistent with extant literature.39 In our data,

more educated, higher income, and more cognitively able individuals tend to be less risk

averse, more loss averse, more patient, and make more consistent choices. Cognitive ability

is the strongest predictor of each parameter, with correlations that are robust to inclusion of

controls. Notably, in fact, cognitive ability appears to explain a large part of the relationship

between education and economic preferences.40

39See Appendix A for a more detailed discussion of prior studies examining the correlates of economic
preferences.

40Appendix E.4 shows that the results in Table 2 are similar when allowing for a non-monotonic relationship
between economic preferences and cognitive ability, including using categorical dummies for control variables,
and restricting the sample to those above median response time (on DOSE or the survey as a whole) or those
above median choice consistency. Appendix Table E.5 demonstrates that it is the inclusion of cognitive ability
that attenuates the coefficient related to education.
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Moreover, these results are robust to checks for misspecification of either the utility or

error function used to produce DOSE estimates, as detailed in Appendix E.3. The DOSE

estimates are underpinned by a clear pattern of choices: higher cognitive ability participants

are more likely to accept lotteries offering only potential gains, less likely to accept lotteries

with potential losses, and more likely to accept later-dated payments. These patterns mean

that our estimates of participants’ preferences—and the estimated correlations with other

individual characteristics—are very similar when re-estimating with alternative parametric

assumptions. In particular, the correlation between cognitive ability and discounting is al-

most identical when allowing for present bias (which is also strongly correlated with cognitive

ability), and the correlations between cognitive ability and both risk and loss aversion are

very similar when re-estimating the parameter estimates assuming Constant Average Risk

Aversion (CARA) utility, allowing for differential curvature over gains or losses, modeling

choice consistency using a probit function, or when using the Random Parameter Model

suggested by Apesteguia and Ballester (2018).41

5.2 Choice Consistency and Estimate Accuracy

Inconsistent choice can explain much of the mixed evidence regarding the relationship be-

tween risk aversion and cognitive ability both within our survey and in the literature (Dohmen

et al., 2018). As demonstrated by the simulations in Section 3, MPLs and other techniques

measure risk aversion with considerable error when participants make inconsistent choices.

Error attenuates, and potentially biases, any estimated relationship between these measures

and other factors. In this subsection, we show that inconsistent choice is related to attenua-

tion in our survey. In particular, DOSE identifies stronger patterns of correlations between

individual characteristics and economic preferences than established risk aversion measures.

41In fact, we observe strong correlations with cognitive ability with non-parametric preference measures
derived from the DOSE choice data. Cognitive ability is correlated 0.13 (s.e. = .03) with the share of lotteries
over only gains accepted by a participant, -0.21 (.03) with the share of mixed lotteries accepted, and 0.22
(.02) with the share of later-dated payments accepted. Estimating risk aversion using the 4-question DOSE
sequence we find a correlation of −0.10 (.03) with cognitive ability, using the 10-question risk-loss module
the correlation is −0.12 (.03).
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However, for incentivized elicitation methods, the patterns of correlations are more similar

when we focus only on participants that make (more) consistent choices.

The estimated correlation between risk aversion and cognitive ability varies considerably

across elicitation methods, as shown in the right panel of Figure 7. The correlation with

the full 20-question sequence is −0.22 (s.e.=.03). In contrast, the correlation with the MPL-

based risk aversion measure is just −0.01 (.03), with the risky project measure it is −0.10

(.03), and with the qualitative self-assessment it is 0.01 (.03). Thus, depending on the

measure, we find a correlation ranging from strongly negative (and statistically significant)

to slightly positive (and insignificant). These patterns are consistent with the simulation

findings that DOSE obtains more accurate estimates than MPLs—and hence correlations

with DOSE estimates suffer less from attenuation bias.

Further, the pattern of correlations for all three incentivized elicitation methods is similar

if we focus on participants with above-median choice consistency (µ)—see the middle panel

of Figure 7.42 A number of relationships between the MPL measure and other variables—

including cognitive ability—are now statistically significant, despite larger standard errors

due to lower sample size. The DOSE estimates, in contrast, exhibit similar correlations when

limiting the sample to participants with below-median choice consistency (except education,

right-hand panel)—while correlations with MPL estimates are almost zero. Correlations with

the self-assessment question, however, remain quite different in all three panels, suggesting

this measure is substantially different.

We also observe different correlations between cognitive ability and time preferences

when using incentivized elicitations rather than a qualitative self assessment (see Appendix

Table E.3 for details). In particular, cognitive ability is positively correlated with both DOSE

42For this analysis, we identify choice consistency using only the time preference DOSE module, which
seems to produce more informative estimates of µ, because the time questions included responses which
are clear “mistakes” under most parameter values—for instance, accepting substantially fewer points today
than tomorrow. The results are similar when splitting the sample using the µ from the entire question
sequence—see Appendix Figure E.7. For comparability to DOSE, Figure 7 uses risk aversion parameters
derived from each incentivized elicitation, as in Figure 6. The results are very similar when using non-
parametric measures—certainty equivalents from the MPLs, or the amount invested for risky project—see
Appendix Figure E.8.
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Figure 7: DOSE measure of risk aversion is more highly correlated with individual charac-
teristics before accounting for choice consistency.
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Notes: Figure displays correlations between each measure of risk aversion and individual characteristics. The
left-hand panel includes all participants, the middle contains those with above median choice consistency, and
the right-hand panel contains those with below median choice consistency. The survey contained two MPL
measures of risk preference—we estimate correlation coefficients using stacked regressions and clustering
standard errors by participant. Bars represent 90% confidence intervals.

(0.18; s.e.=.03) and MPL measures (0.19; s.e.=.03) of discounting (δ), and also with the

DOSE measure of present bias (0.17; s.e.=.03—see Appendix Table E.2). However, cognitive

ability is negatively correlated with the qualitative self-assessment of time preferences (-0.10;

s.e.=.03), implying that individuals with higher cognitive ability place a lower value on the

future, in stark contrast with the results from the DOSE and MPL-based measures of time

preferences.

The patterns in Figure 7 demonstrate that the DOSE choice consistency parameter can

assist researchers in addressing survey noise by identifying individuals who, on that survey,

are likely making more mistakes—even outside of the DOSE module. This information is

difficult to obtain through other easily available measures. For example, as we demonstrate

in Appendix E.5, the correlations in Figure 7 cannot be recovered by truncating the sample

based on response time rather than consistency (Rubinstein, 2016). In fact, the consistency

measure helps distinguish whether fast responses reflect a lack of attention: restricting the

sample to high-consistency participants recovers correlations even among the subgroup of
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participants with particularly fast response times. The value of the choice consistency mea-

sure is particularly striking when we consider that our DOSE design did not focus primarily

on eliciting this measure. Simple design tweaks—such as allowing the procedure to ask ques-

tions multiple times—could allow µ to be measured more accurately, and hence provide even

more information to researchers.

Moreover, we cannot recover similar correlations between cognitive ability and risk aver-

sion by applying techniques to account for classical measurement error. The fact that our

survey contains duplicate MPL elicitations allows us to use the ORIV technique (Gillen et

al., 2019). This technique produces estimates that account for measurement error that is

orthogonal between the two MPL elicitations. The estimated ORIV correlation for the MPL

risk aversion measure is −0.05 (.03), smaller than the correlation obtained using the risk

parameter from a 4-question DOSE sequence. These results suggest that other risk aversion

elicitations contain sources of non-classical measurement error that DOSE avoids. In the

following subsection, we investigate one possible source of error—the tendency to choose

focal values.

5.3 Cognitive Ability and Focal Value Response

DOSE may also identify stronger correlations with cognitive ability because it is less subject

to focal value response (FVR)—such as only considering as possible answers the bottom,

middle, or top of a response scale—than established methods. As discussed earlier in the

paper, FVR can preclude parameter estimates being obtained due to the presence of First

Order Stochastically Dominated Choices (see Section 3), and lead to very coarse distributions

of estimated preference parameters (see Section 4.2). These issues may lead to skewed

estimates of correlations with individual characteristics. In this subsection, we document

considerable FVR in the established elicitations of risk aversion and time preferences in our

survey, and show that such behavior is concentrated amongst those participants with lower

cognitive ability. We see little evidence of similar response patterns in the DOSE module.
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Figure 8: Choice of focal values is more common for low cognitive ability participants, but
is less evident in the DOSE module than in other elicitation methods.
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Established risk elicitation methods suffer from a much higher degree of FVR than DOSE,

particularly among participants of low cognitive ability, as shown in the left-hand panel of

Figure 8. Following Barrington-Leigh (2024), we identify potential FVR by the degree of

“heaping” of particularly salient options—the end-point or mid-points of the MPLs, a choice

of 0, 5, or 10 in the qualitative self-assessments, or the choice to invest none, half, or all of

the endowment in the risky project question. Around one-third of responses in each of the

MPLs and in the qualitative risk question (34% and 32% respectively) are at focal values,

while in the risky project, 60% of choices were at focal points. Similar focal values are hard

to even identify in the binary options used in DOSE, but, in principle, participants could

limit the binary response scale to a single point—and hence always choose only the first or

only the second option (equivalent to consistently choosing either the lottery or the sure

amount). Only 6% of participants chose in this way.

A similar pattern of FVR in the time preference elicitations can be seen in the right-hand

panel of Figure 8. In DOSE, very few participants—5 out of 2,000—consistently chose only
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the first or only the second option in every question.43 In the time MPL, the rate of FVR

was even higher—54% of responses—than in the risk MPLs. However, in this case, the rate

of focal value response is highest among those with the greatest cognitive ability—58% in

the top tercile versus 51% in the bottom tercile. This difference may reflect the fact that

higher cognitive ability people tend to be more patient, and hence more likely to pick the row

of the MPL that indicates no discounting due to a true preference, rather than a heuristic.

The pattern for self-assessed time preferences is similar to self-assessed risk attitudes—34%

of responses were at focal values. Again, there is heterogeneity by cognitive ability: 41% of

those in the bottom tercile chose a focal value, versus 25% of those in the top tercile.

The strong negative correlation between FVR and cognitive ability in our data raises the

possibility that the perceived complexity of established methods may confound estimates of

this relationship. The high rate of FVR amongst those with low cognitive ability suggests

that the questions may place a high cognitive burden on participants, leading to the use of

heuristics when responding.44 This claim is buttressed by the fact that participants making

mistakes during MPL training are more likely to choose FVRs in the actual survey, even

after controlling for cognitive ability and for whether a participant failed survey attention

checks.45 Established elicitations—even those considered relatively “simple” by researchers—

thus appear to introduce a complex set of biases which may confound estimates with other

individual characteristics. Moreover, ex post adjustments for classical measurement error—

43In contrast to the risk-loss module, there was no fixed ordering of options in the questions of the time
preference module, meaning that we can distinguish choices based on the ordering of the options from the
content of those options (that is, early or later payment in this case).

44Such behavior is consistent with the results of Gideon et al. (2017), who show that cognitive measures,
such as superior working memory, are associated with less-frequent selection of round numbers. Qualitative
self-assessment questions may not, at first glance, appear to place a high cognitive burden on participants.
However, the qualitative risk question requires participants to i) consider the definition of “risky behavior”
and its relevance to their own life, ii) reflect on their previous behavior in light of this definition and iii)
decide how to map that behavior onto a quantitative scale. The degree of FVR we observe in these questions
is not specific to our survey implementation—Dohmen et al. (2011, see Figure 1) report similar levels of
FVR for the self-assessed risk measure in a representative sample of the German population. Charness and
Viceisza (2016, Figure 6) report that around half of responses are at focal values when administering the
same measure in rural Senegal—a finding they assign to either misunderstanding or frivolous answers.

45This fact is based on data from Chapman et al. forthcoming, as we do not have data regarding mistakes
within MPL training in our main dataset.
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such as the ORIV technique—cannot address such biases. DOSE avoids these issues by

allowing the use of simple binary choices, while accounting for the problems of inconsistent

choice. By doing so, DOSE can help uncover correlations that may otherwise be obscured—

or spuriously created—by measurement error.

Notably, our data suggest that low cognitive ability participants may understand self-

assessment questions differently than those with higher cognitive ability, as we see in Figure

9. Here, we investigate the relationship between the qualitative self-assessments for risk

(top panel) and time (bottom panel) and the relevant parameter estimates from our DOSE

module, for each of the terciles of cognitive ability. The patterns vary considerably accord-

ing to the level of cognitive ability. For instance, we see a strong correlation between the

incentivized and self-assessed measures of risk aversion for highly cognitively able partic-

ipants (0.23; s.e.=.06), but not for those with low cognitive ability (0.06; s.e.=.06). For

time preferences, we observe a positive relationship between incentivized and self-assessed

measures for participants with low cognitive ability (0.09; s.e.=.05) but not for those with

high cognitive ability (−0.01; s.e.=.06). This pattern could result from high cognitive ability

individuals finding it easier to map their behavior onto a quantitative response scale, as

discussed in the previous paragraph. Alternatively, it could reflect different interpretations

of the questions—for instance, high cognitive ability individuals may interpret “taking risks”

as relating to behavior over lotteries (similarly to economists), while low cognitive ability

individuals have a different concept in mind. However, in either case, there is no consis-

tent mapping between the behavioral preference measures and responses to the qualitative

questions.

Together, these findings suggest some caution should be used when using qualitative self-

assessments with general populations or with sub-populations in which limited understanding

may be a concern. These measures have become popular due to their low cost in survey time

and incentives, easy implementability, and the fact that they have been experimentally-

validated (Dohmen et al., 2011; Falk et al., 2023). Our results suggest that experimental
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Figure 9: The relationships between incentivized and self-assessed preference measures vary
according to the level of cognitive ability.
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intervals.

validations among undergraduate students—who tend to have high cognitive ability (Snow-

berg and Yariv, 2021)—may not extrapolate to broader contexts (see also Chapman et al.,

2024). Further, the use of numerical rating scales underpinning these questions relies on

the (generally implicit) assumption that participants can map their own economic prefer-

ences on to the scale and that participants share a common understanding of the meaning

of each point (Krosnick and Presser, 2010). Our results suggest that both assumptions may

be problematic, and hence that it is not clear if or how responses to these questions can be

translated into economic preference parameters.

More generally, the prevalence of FVR poses a serious challenge to the use of established
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elicitation methods in broad populations. Bunching of responses means that the granularity

of estimated preferences may be extremely limited, even when using very granular scales, such

as the risky project measure. Moreover, statistical models treating responses as unobserved

latent variables, with typical distributions of perceptual or response noise centered around

the latent value, cannot gracefully explain these response patterns, as the error due to FVR

will be correlated with the signed distance between the latent value and the expressed value.

Eliciting preferences using a sequence of binary choices appears to mitigate these issues,

however, using nonadaptive designs may be prohibitively time consuming. By selecting an

informationally-optimal sequence of questions, DOSE avoids this issue.

6 Discussion

In this paper, we introduce DOSE—Dynamically Optimized Sequential Experimentation—

and use it to study economic preferences in a representative sample of the U.S. population.

Our main results are summarized in Table 3. First, DOSE elicits multiple fine-grained

estimates of preference parameters in the time it takes established elicitations to elicit one

much coarser estimate. Second, the DOSE parameter estimates are more highly correlated

with cognitive ability and more stable over time than other elicitations, in line with our

simulation evidence that the latter suffer from greater measurement error. Third, among

participants with high choice consistency, as identified by DOSE, there is a strong negative

correlation between higher cognitive ability and MPL measures of risk aversion. Fourth, in

contrast with other methods, our DOSE implementation does not suffer from significant rates

of focal value response, suggesting that the procedure is easy to understand, so participants

do not use heuristics. Together, these results suggest that measurement issues may explain

both low estimates of inter-temporal stability of economic preferences, and mixed results

about the relationship between cognitive ability and risk aversion in the extant literature.

It is straightforward to adapt the DOSE procedure to tackle many other research ques-

43



Table 3: Comparison of DOSE with Other Incentivized Elicitation Methods

DOSE MPL
Risky Self

Project Assessments

Correlations w/ Demographics

Risk Aversion X ≈ 0 X ≈ 0

Loss Aversion X n.a.† n.a. n.a.

Patience / Time Preference X X n.a. X

Correlations w/Cognitive Ability

Risk Aversion -0.21 ≈ 0 -0.07 ≈ 0

Loss Aversion 0.40 n.a.† n.a. n.a.

Patience / Time Preference 0.18 0.18 n.a. -0.10

Parameter Recovery Analysis

Inaccuracy: Risk Aversion 15% 37% 36% n.a.

Correlation: Risk Aversion 0.79 0.45 0.40 n.a.

Inaccuracy: Loss Aversion 15% 36% n.a. n.a.

Correlation: Loss Aversion 0.91 0.64 n.a. n.a.

Survey Behavior

Speed 115 secs 259 secs 33 secs 12 secs

Stability: Risk Aversion 0.44 0.28 0.33 0.58

Stability: Loss Aversion 0.40 n.a.† n.a. n.a.

Stability: Patience 0.47 0.24 n.a. 0.69

Evidence of Heuristics

Choice of Focal Values 3% 34% 60% 33%

Correlation w/Cognitive Ability -0.07 -0.11 -0.07 -0.17

Notes: Correlations with cognitive ability and with demographics are estimated using our survey data, with
X indicating that a pattern of statistically significant correlations was identified (Section 5.1). “Stability” is
the correlation across survey waves, conducted six months apart (Section 4.3). Parameter Recovery Analysis
(Section 3.2 and Appendix D) tests how well a procedure recovers known parameters from simulated data:
“Inaccuracy” is the average absolute percentage difference between the estimated and true parameter
values, and “Correlation” is the correlation between the estimated and true parameter values. While most
entries of n.a. are because the elicitation type is not designed to measure the quantity of interest, † indicates
that estimates for loss aversion could not be recovered because of violations of FOSD, see Section 3.2. Speed
represents the survey time for a single survey module (for DOSE, this measures the time taken to elicit
risk and loss aversion, and for the MPL, this measures the time taken to complete the time preference
MPL module, including reading instructions), or, in the case of self-reports, a single question. Evidence of
Heuristics refers to the possible use of Focal Value Response, discussed in Section 5.3 (for the MPL and
risky project, this is measured using the risk aversion elicitation, and for DOSE and self-assessments, it is
measured using both risk and time preference elicitations).
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tions. The procedure could be used to elicit alternative sets of behavioral parameters, such

as probability weighting functions or social preferences (Camerer et al., 2020). Freundt et

al. (2023), for example, use DOSE as part of a two-step procedure to estimate individual

preferences for choice autonomy, and use the DOSE choice consistency parameter to identify

highly consistent participants. Alternatively, slight modifications of the DOSE implemen-

tation used here could distinguish whether inconsistent choice appears random, or whether

there are “consistent inconsistencies” in the choices of participants, suggesting a need for

behavioral models that incorporate this phenomenon. Future researchers interested in incen-

tive (in)compatibility in dynamic processes could adapt the DOSE procedure to incorporate

the possibility of strategic manipulation as a separate theory of behavior, drawing on the

ideas discussed in Section 2.2 and Appendix B.1 (and see Echenique and Prasad (2019)

for a theoretical discussion of incentive-compatible learning algorithms). More generally,

adaptive methods such as DOSE can expedite the evolution of rapid elicitation procedures

that capture multiple preferences simultaneously, akin to the transition in psychology from

long-form (50-100 items) to shorter-form scales (5-10 items) that allow many characteristics

to be measured simultaneously.

Critically, the accuracy, speed, and simplicity of DOSE potentially expands the range

of research settings in which incentivized preference elicitation is viable. In particular,

economists have often shied away from using incentivized measures in large samples because

of high measurement error and the prohibitive cost of implementing multiple elicitations

(Schildberg-Hörisch, 2018). DOSE may be particularly valuable in field experiments, where

it is difficult to provide participants with detailed instructions. Similarly, it may also be

easier to implement than more complex or time-consuming designs when conducting ex-

periments with low-literacy participants, children, patients with medical disorders, or even

animals. DOSE performs better than other elicitations when studying low-cognitive-ability,

low-education, and low-income participants, suggesting that it could be particularly useful in

developing countries, where current elicitation methods can be undermined by inconsistent
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choice (Jacobson and Petrie, 2009; Charness and Viceisza, 2016), and new techniques are

particularly needed (Berry et al., 2020). Indeed, our finding of widespread loss tolerance

suggests that the failure to investigate the preferences of such groups may lead important

behavioral regularities to be overlooked.

The ability to accurately estimate individual-level preference parameters in the field can

contribute both to the study of preferences and the design of behavioral policy. As we

have shown in this paper, existing measurement techniques may underestimate the stabil-

ity of preferences over-time and the correlations between economic preferences and other

characteristics—such as cognitive ability—with clear implications for the study of how pref-

erences are formed. Further, individual-level preference estimates could be incorporated into

personalized, targeted—and hence more effective—policy interventions, such as customized

incentivized contracts Andreoni et al. (2023) or adaptive treatment assignment (Kasy and

Sautmann, 2021). DOSE provides a flexible elicitation method that allows researchers to

study such questions across a broad range of research environments and subject pools.

46



References

Abernethy, Jacob, Theodoros Evgeniou, Olivier Toubia, and Jean-Philippe Vert,
“Eliciting Consumer Preferences Using Robust Adaptive Choice Questionnaires,” IEEE
Transactions on Knowledge and Data Engineering, 2008, 20 (2), 145–155.

Aguiar, Mark, Mark Bils, and Corina Boar, “Who are the Hand-to-Mouth?,” Review
of Economic Studies, forthcoming.

Aigner, Dennis J., “A Brief Introduction to the Methodology of Optimal Experimental
Design,” Journal of Econometrics, 1979, 11 (1), 7–26.

Allcott, Hunt, Matthew Gentzkow, and Lena Song, “Digital Addiction,” American
Economic Review, 2022, 112 (7), 2424–2463.

Andersen, Steffen, Glenn W. Harrison, Morten I. Lau, and E. Elisabet Rutström,
“Elicitation Using Multiple Price List Formats,” Experimental Economics, 2006, 9 (4),
383–405.
, , , and , “Eliciting Risk and Time Preferences,” Econometrica, 2008, 76 (3),
583–618.

Andersson, Ola, H̊akan J. Holm, Jean-Robert Tyran, and Erik Wengström, “Risk
Aversion Relates to Cognitive Ability: Preferences or Noise?,” Journal of the European
Economic Association, 2016, 14 (5), 1129–1154.
, H̊akan J. Holm, Jean-Robert Tyran, and Erik Wengström, “Robust Inference
in Risk Elicitation Tasks,” Journal of Risk and Uncertainty, 2020, 61, 195–209.

Andreoni, James and Charles Sprenger, “Estimating Time Preferences from Convex
Budgets,” The American Economic Review, 2012, 102 (7), 3333–3356.
, Michael A. Kuhn, and Charles Sprenger, “Measuring Time Preferences: A Com-
parison of Experimental Methods,” Journal of Economic Behavior & Organization, 2015,
116, 451–464.
, Michael Callen, Karrar Hussain, Muhammad Yasir Khan, and Charles
Sprenger, “Using Preference Estimates to Customize Incentives: An Application to Polio
Vaccination Drives in Pakistan,” Journal of the European Economic Association, 2023, 21
(4), 1428–1477.

Apesteguia, Jose and Miguel A. Ballester, “Monotone Stochastic Choice Models: The
Case of Risk and Time Preferences,” Journal of Political Economy, 2018, 126 (1), 74–106.

Barrington-Leigh, Christopher P., “The Econometrics of Happiness: Are we Underesti-
mating the Returns to Education and Income?,” Journal of Public Economics, 2024, 230,
105052.
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A Risk and Time Preferences in Prior Studies

In this appendix we compare our results regarding the correlates and temporal stability of

economic preferences to those from prior studies. We start by comparing the estimates of

risk and time preference in different samples to the prior literature, and then—building on

the main text—discuss prior studies investigating the correlates and temporal stability of

those preferences.

A.1 DOSE Estimates in Different Samples

Our findings regarding the extent of risk aversion and discounting in the general population

are broadly similar to those of previous studies in representative populations; the few dif-

ferences appear to be explained by our elicitation method. Risk aversion and discounting

are widespread amongst our survey participants, but the median level of risk aversion is

lower than found in the previous literature—a difference that may be explained by our use

of binary choice questions rather than MPLs.

In addition to our general population survey, we also use DOSE to elicit risk and time pref-

erences from undergraduate students both online and in the laboratory, providing a clearer

comparison to the many studies investigating preferences in undergraduate populations.

Online Student Sample: We implemented a 10-question risk-loss DOSE module in an

online survey of undergraduate students (N = 369) recruited from the University of Pitts-

burgh Experimental Laboratory (PEEL). The survey was very similar to our general popu-

lation survey. As with our representative sample: participants completed the survey through

YouGov’s online portal and questions were presented with the same point value. The main

difference between the samples is that the students received payment in cash, via Visa gift

card, rather than in YouGov points.1

Laboratory Samples: We compare our student sample to a sample (N = 439) of partic-

ipants completing DOSE modules in four previous laboratory studies. Each of these studies

implemented DOSE (based on our original working paper, Wang et al. (2010)) to estimate

risk and loss aversion using binary choices with the same structure as those in our survey.

1Payment was completed within two weeks of survey completion using an exchange rate of 1,000 points
=$1. The survey was completed in January 2019. The median time to complete the survey was shorter than
among our representative sample—22 minutes—partly because there were fewer tasks, and partly because
the students went through each task an average of 25% faster. The average payment was $15.50 due to the
removal of some low-average-value tasks.
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Figure A.1: The general population is more risk tolerant and loss averse than students.
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Notes: The figure displays the kernel density of each parameter, plotted using Epanechnikov kernel with band-
width chosen by rule-of-thumb estimator. “Student Sample” refers to students completing DOSE in an online
survey. “Laboratory Samples” refers to students completing DOSE in previous laboratory experiments—see
text above for details.

We take those individual choices, and then re-estimate the individual risk and loss aversion

parameters using the same procedure and priors as used for our main estimates.2

Differences in elicitation method appear to explain the lower level of risk aversion esti-

mated by DOSE than found in previous studies of representative samples. The mean and

median Coefficient of Relative Risk Aversion (1-ρ) are 0.30 and 0.34 respectively, compared

to previous findings ranging from approximately 0.4 (Dohmen et al., 2010) to 0.7 (Harrison

et al., 2007; Andersen et al., 2008). This pattern is consistent with laboratory studies find-

ing lower levels of risk aversion using binary choice questions: the median coefficient using

DOSE is 0.05 in the lab and 0.17 in our student survey—similar to the value of 0.12 found

by Sokol-Hessner et al. (2009) using binary questions, but much lower than the range of

0.3–0.5 found by Holt and Laury (2002). Moreover, the median coefficients on the MPLs on

our survey (0.4 and 2.1) are more in line with previous studies.

For discounting, we estimate a median monthly discount factor (δ) of 0.90, which is

similar to the monthly discount factor reported by Meier and Sprenger (2010), and falls in

the lowest quartile of the results of three recent laboratory studies using the Convex Time

Budget method of Andreoni and Sprenger (2012)—see Imai and Camerer (2018, Appendix

Table D1). In our student sample, we find a slightly lower median discount factor of 0.87—

however given the differences in payment across samples (cash versus points), it is difficult

258 participants completed DOSE at Caltech (Krajbich et al., 2017), 172 at Claremont McKenna (108
collected by Clay et al. 2017 and 64 by Clay et al. 2016), and 209 students at UCLA (this data was generously
provided to us by Alec Smith).
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to compare directly.

The results in Figure A.1 provide further evidence that DOSE is an effective tool in

online surveys. We find that students are both less risk averse and more loss averse than

the general population, whether DOSE is used in the laboratory or in an online survey—the

survey implementation does not appear to affect our results. Second, the distributions are

very similar across survey waves, suggesting that participants make consistent choices over

time—it does not appear that initial confusion or attempts to “game” DOSE during the

second elicitation are a major factor in the estimates.

A.2 Correlates of Economic Preferences

The patterns of correlation between economic preferences and sociodemographic character-

istics we find (see Table 2), largely match the literature. The relationship between cognitive

ability and patience, unlike risk aversion, is well-established in both economics and psy-

chology (for example, Shamosh and Gray, 2008; Burks et al., 2009; Dohmen et al., 2010;

Benjamin et al., 2013). Patient individuals have also been found to have higher income,

greater savings, and more education (see DellaVigna and Paserman, 2005; Urminsky and

Zauberman, 2016; Falk et al., 2018). In the laboratory most studies have documented that

women are more risk averse than men (Eckel and Grossman, 2008), as have Falk et al. (2018)

in a representative sample. There is also some evidence of a negative relationship between

risk aversion and income, although results have been mixed (see, for instance Dohmen et

al., 2010; Barsky et al., 1997). A recent meta-analysis finds, in line with our results, that

age is not related to risk aversion, but is related time preference (Bagäıni et al., 2023). Also

consistent with our results, Olschewski et al. (2018) find that greater cognitive load leads to

less consistent choice.

The most important difference between our results and the literature is the relationship

between risk aversion and cognitive ability, where we find a strong negative correlation,

whereas results in the previous literature are mixed between somewhat smaller negative

correlations, no correlations and, occasionally positive correlations (see Lilleholt, 2019, for a

metaanalysis). As discussed in Section 5.2, it appears this difference is explained by the fact

DOSE accounts for inconsistent choice.

A.3 Temporal Stability of Economic Preferences

As noted in Section 4.3, the over-time correlation of the DOSE preference estimates is larger

than estimates in most previous studies, but direct comparisons are complicated by differ-

ences in the sample used. Chuang and Schechter (2015) review previous studies of stability
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of risk and/or time preferences, reporting that most studies use hypothetical methods. A few

incentivized studies report higher correlations than DOSE over much shorter periods of time

(Wölbert and Riedl, 2013; Dean and Sautmann, 2014; Falk et al., 2023). Mata et al. (2018)

provide a more recent meta-analysis, and find that over a five-year period the stability of

lottery-based risk elicitations—both incentivized and hypothetical—is 0.2. In another field

study, Kirby et al. (2002) reports correlations of 0.09–0.23 over a six month period among

Bolivian Amerindians.

The variety of the methodologies, both in terms of time between elicitations, and in sam-

ple composition — for instance, it is not clear how best to compare our representative sample

to selected sub-samples such as Meier and Sprenger (2015)’s low-income Americans—mean

that we cannot identify the reasons for differences between studies. However, in general, we

identify higher stability than most previous estimates, particularly outside the laboratory—

consistent with the DOSE estimates being less affected by attenuation bias due to measure-

ment error.

B DOSE Procedure and Survey Implementation

This Appendix presents details of the DOSE implementation we used to estimate economic

preferences in the U.S. population. We start by explaining the technical features of DOSE,

focusing on the choices experimenters can make to tune the procedure for other applications.

We then describe the elicitations we used in our online survey.

B.1 The Potential for Gaming DOSE and Incentive Compatibility

In this Appendix we discuss the potential issue of gaming in DOSE and other dynamic elic-

itation methods. While in principle a participant could have an incentive to game adaptive

question sequences, we argue, drawing on previous work, that this is unlikely to be a concern

in practice.

Let’s start with a scenario which is the easiest case for gaming and hence is the worst

case from the point of view of an experimenter. A participant faces a series of simple choices

between a certain payment $X or a 50% coin flip between 0 and $10. The value of X is

varied dynamically to pin down a certainty-equivalent amount which is equal to the gamble

value. Suppose the initial choice is between the gamble and $X=4. A person who truly

prefers $4 might strategically choose the gamble, if they think that doing so would lead the

experimenter to increase the values of $X in subsequent questions to “titrate” how much
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they tolerate risk. Expressing an exaggerated preference for risk, by turning down $4, could

benefit them over their entire portfolio of immediate and—hypothesized—later choices that

are dynamically-adjusted. There is no question that the possibility of dynamic gaming

exists and could in principle undermine inference. For example, if the hypothetical subject

above keeps turning down gambles in order to get better and better ($X; coin flip) binary

choices she will earn more money, and her Bayesian posterior will put too much weight on

risk-preference.

However, in practice, gaming of this kind will be a major concern only if a number of

quite stringent conditions hold. In particular, gaming requires all of following: (1) partici-

pants believe that future test choices depend on previous responses (recall that they are not

informed of this fact in our survey); (2) participants can and do compute how to misrepre-

sent preferences in early choices to create better future choices (as evaluated by their own

preferences); and (3) the expected value of misrepresentation computed in step (2) must be

high enough to be worthwhile, ex ante. In a “rational gaming” type analysis, if they don’t

believe in (1) then they won’t proceed to (2). If step (3) isn’t satisfied they will not make

the step (2) computation. These conditions require a high level of participant sophistica-

tion, ability to undertake complex calculations, and understanding of the DOSE algorithm.

Moreover, they require that gaming is actually beneficial, which is not necessarily the case,

as discussed further below.

Ray et al. (2012) provide direct evidence regarding steps (2) and (3) of this chain. First,

to test whether participants actually game adaptive algorithms (condition (2)) and what

happens if they try to, they compare a baseline control with an augmented-instructions

treatment in which they explicitly instructed subjects that gaming could help them. Specif-

ically, the instructions said (excerpted):

It could help you to know that an adaptive algorithm generates the choices be-

tween two lotteries that are presented to you. . . It is possible, mathematically,

to choose lotteries you do not like in the beginning in order to lead the adaptive

algorithm to create future lottery choices that you like better. . . If you think

you can guide the algorithm in this way, by choosing lotteries you don’t like to

create better choice pairs in future trials, you are free to do so.

The results showed little evidence that gaming was important. The distributions of

best-fit risky choice models did not differ in the control and explicitly-instructed treatment.

Further, in post-experiment debriefings, a majority of participants said they did not consider

gaming. This claim is supported by direct evidence of (a lack of) gaming in their data.

Specifically, Ray et al. (2012) point out that gaming should leave two clear fingerprints.
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First, response times will be longer when gaming is occurring, and drop sharply when gaming

is finished. However, the response time profiles across trials in the experimental session

were statistically indistinguishable between control and explicitly-instructed subjects, and

followed a very regular learning-curve reduction in RT. Second, trial-by-trial parametric

classifications should reverse from early to late trials if there is gaming. Recall our simple

example of a risk-averse subject who is truly indifferent between $X=$4 and a $0-10 coin

flip, but pretends to be risk-seeking in early choices in order to get future choices with higher

values of $X. Their estimated risk-aversion parameter will go sharply down over early trials,

then reverse and go sharply up. They rarely observed this type of parametric reversal in

their data (see also Appendix Figure E.2 and surrounding discussion).

To contribute evidence about step 3, Ray et al. (2012) compute the expected gain from

gaming, and find it is relatively low. Their example is a hypothetical person in a binary risky

choice paradigm with (assumed) expected-value preferences who could perfectly compute

optimal gaming for a 10-trial sequence of choices. This hypothetical person could access the

“God screen” of how the DOSE sequence was created to pick binary choices in round t+1

based on the history of choices before t+1, and could perfectly compute how to game early

choices to maximize expected payoff across all 10 trials (assuming all trials are equally likely

to be chosen for payment). Under this best-case scenario, the hypothetical optimally-gaming

agent earned 8% more. As such, participants had limited financial incentive to engage in

gaming.3

In sum, gaming is not in practice rewarding, does not seem to be widespread, and is not

evident either in response time patterns or classification reversals. As such, it is unlikely to

be a concern in most settings, or pose a threat to our results.

Further, if gaming is a concern in other research contexts, then it is straightforward to

implement DOSE with an incentive-compatible payment scheme. One method (Johnson et

al., 2021) is to choose large design space, and sample one binary choice from that space.

If the sampled choice was in the set of sequential choices that were actually faced, choose

what the subject already picked. If it’s a new choice, then their novel choice will count for

pay. This method removes the gaming incentive, by breaking the link between the sequence

of questions asked and the likelihood a question is chosen for payment. Another method,

3Informal theory offers an explanation for the low benefit to gaming. Specifically, in later periods, it
does not pay to strategize since doing so makes suboptimal immediate choices. In early periods, strategizing
is immediately costly (for the same reason), but may offer benefits in future questions—there is a natural
tradeoff between the cost of strategizing in early periods, and possible future gains. In a sequence of ten
questions the short-run costs are relatively large versus these future gains. While gaming could be more of
a concern in a longer DOSE sequence, this discussion also suggests an easy remedy: exclude some fraction
of earlier periods and recompute Bayesian posteriors using only later periods, or adjust the randomization
weights of choosing a single choice to resolve for pay so later choices are much more heavily weighted.
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suggested by Ian Krajbich, and implemented in Krajbich et al. (2017), is to use the sampled

choices as a way of training an algorithm—the parametric specification which is encoded in

the posterior from the last actual choice. The trained choice specification is then used to

make a novel choice. In this method, the subjects are essentially “training” an algorithm,

much as choices of Amazon books are training a recommender system.

B.2 DOSE in a Representative Survey

We now turn to the practical details of implementing DOSE in two waves of a large, rep-

resentative, incentivized survey of the U.S. population. The survey includes two DOSE

modules—one relating to risk and one to time preferences—as well as other behavioral elic-

itations, and cognitive and sociodemographic questions.

B.2.1 DOSE Modules

Both of the DOSE modules were comprised of ten questions selected using the procedure

described in Appendix 2, slightly modified due to the practicalities associated with imple-

menting the survey online. The design of YouGov’s online platform precluded using DOSE

to choose questions in real time and so, instead, simulated responses were used to map out

all possible sets of binary choices in advance. That tree was then used to route participants

through the survey. Mapping such a tree with a refined prior was infeasible given both

computational constraints and the limitations of YouGov’s interface (mapping such a tree

over 20 questions would involve over 500,000 routes through the survey). As such, questions

were selected using a coarser prior and then final individual-level estimates were obtained

by performing the Bayesian updating procedure with a joint 100-point discretized uniform

prior.4

We now describe the particular design choices—the priors, utility specification, and ques-

tion set—that we made for each of the two DOSE modules.

Risk Preferences: The first DOSE module elicited risk and loss aversion. Participants

were given 10,000 points and offered a sequence of ten binary choices between a 50:50 lottery

and a sure amount. Two types of lottery were used. The first had a 50% chance of 0 points,

and a 50% chance of winning a (varying) positive amount of points (of up to 10,000). The

4The prior used for question selection included 12 mass points for ρ and δ, 20 for λ, and 4 for µ. To utilize
the information about the curvature of the utility function from the risk-loss module, for the time preference
module participants were assigned to one of ten prior distributions over ρ, based on their estimated ρ from
the risk-loss module.
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second had a 50% chance of winning an amount up to 10,000 points, and a 50% chance of a

loss of up to 10,000 points. In the latter case, the sure amount was always 0 points.5

The question sequence for the risk preference module was selected using the specification

in Equation (1) and a prior constructed using the estimates for laboratory participants

obtained by Sokol-Hessner et al. (2009) and Frydman et al. (2011): 0.2–1.7 for ρ, and 0–4.6

for λ. To account for the survey environment we restricted the question selection procedure

in two ways. First, to focus the procedure on obtaining a precise estimate of ρ before moving

onto estimates of λ, the first four questions in the module were restricted to be lotteries over

gains. Second, to make it harder for participants to identify the adaptive nature (and hence

attempt to manipulate) the procedure, the maximum prize was restricted to be no more

than 7,000 points in each even numbered round.

Time Preferences: The second DOSE module elicited discount factors and refined the

estimates of the curvature of the utility function elicited in the risk preference module.

Participants were offered a sequence of ten binary choices between a lower amount of points

at an earlier date (either the day of the survey, or in the future) or a higher amount at a

later date (up to 90 days in the future). The maximum payment in each question was 10,000

points.6

The time discounting questions were selected accounting for both discounting and present

bias. As with the risk module, some restrictions were placed on the question selection

procedure. The first five questions were restricted to the choice between payment on two

dates in the future. In addition, when considering two options in the future (that is, t1 > 0

and t2 > 0), individuals were assumed to choose as if they have a fixed value of the present

bias parameter (β=0.64, based on the estimates from Tanaka et al. (2010)).

B.2.2 Additional Measures

We also utilize survey measures of cognitive ability and more standard elicitations of risk

and time preferences.

5The set of potential questions used for the risk module allowed for gains ranging between 1,000 and
10,000 points in 500 point increments, and sure amounts and losses varying ranging from 500 points to
10,000 points in 100 point increments. Questions were excluded if one choice was first order stochastically
dominated for all values of the prior distribution. Questions were also selected as if the prize amounts were
3 times the actual amounts offered in the lottery to improve discrimination of the risk and loss aversion
parameters.

6Possible payment amounts in the time module ranged from 1,000 to 10,000 points in 1,000 point incre-
ments, and possible payment days were of 0, 1, 3, 5, 7, 9, 10, 12, 16, 21, 28, 35, 42, 49, 56, 60, 70, 80, 90
days after the survey. The question set included all combinations of these payment amounts and dates in
which the early payment was less than the later payment.
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Cognitive Ability: Cognitive ability was measured using a set of nine questions: six from

the International Cognitive Ability Resource (ICAR, Condon and Revelle, 2014) and three

from the Cognitive Reflection Test (CRT) developed by Frederick (2005).

The IQ test consisted of three questions from the ICAR matrix module and three from

the 3-D rotational module. In the matrix questions, participants were presented with a 3x3

matrix with 8 geometric designs. They then had to choose the correct design to complete the

pattern from a list of 6 possible options. In the 3-D rotational questions, participants were

shown a picture of three sides of a cube. They then had to choose which of six options (each

also showing three sides of a cube) was compatible with a rotated version of the original.

The CRT includes three arithmetically straightforward questions with an instinctive, but

incorrect, answer. The test thus measures the tendency for an individual to reflect upon a

question rather than answer instinctively.

Risk Aversion MPLs: Two MPLs asked participants to choose between a fixed 50/50

lottery and a series of ascending sure amounts. The row in which the participant first chose

the sure amount identified a range of possible certainty equivalents for the lottery—we use

the midpoint of this range. There were two MPLs of this type: the first had a 50/50 lottery

over 0 and 10,000 points, the second, a 50/50 lottery over 2,000 and 8,000 points.7

Time Preference MPLs: In addition to the DOSE module, the survey included two

MPLs to elicit time preferences. The first time MPL elicited the amount of points that

the participant valued the same as 6,000 points 45 days later. The second MPL elicited

the amount of points in 45 days that the participant valued the same as 6,000 points in

90 days. We estimate monthly discount rates based on the midpoint of the row in which a

participant switched to preferring money to today over the future. The bottom row of the

MPLs allowed participants to specify they would prefer receiving 6,000 points in the future

to receiving 6,100 points today. In this case they were assigned a discount rate of 1.

7These MPLs were designed to elicit the willingness to pay (WTP) for a lottery; participants were endowed
with a fixed set of points and asked how much they would exchange for the lottery. An additional two MPLs
in the survey elicited the willingness to accept (WTA) for the same lotteries; that is, participants were
endowed with the lottery and asked the amount of points that they would need to be willing to exchange
the lottery. See Chapman et al. (2023b) for more details of the design of these measures, as well as extensive
discussion of the relationship between WTA, WTP, and other risk elicitations in the survey.
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C Simulations using Laboratory Choices

In this appendix we demonstrate the benefits of DOSE’s personalized question sequence using

data from 120 subjects in two prior laboratory experiments.8 In each of these experiments,

participants were asked the same set of 140 binary choices over gains and losses—with each

choice having the same structure as the questions used in our survey. A 20-question DOSE

procedure obtains parameter estimates that are close to (within 15% of) parameter estimates

after 140 questions. Further, a joint uniform prior over the parameters is close to optimal

for question selection. The Bayesian procedure also requires many fewer questions to elicit

individual-specific estimates of risk and loss aversion than Maximum Likelihood Estimation.

C.1 Estimates of Risk and Loss Aversion

In our simulation, we optimally order the questions for each participant using DOSE and

compare the parameter estimates to those that would be obtained under a random question

ordering. After DOSE selects a question, we provide it with the answer the participant gave

in the experiment. The procedure then updates the probability distribution over parameters,

selects the next question, and so on. This allows us to compare, question by question, the

inaccuracy—the absolute distance from the true parameter value as a percentage of the true

value—of DOSE’s estimates with those elicited by a random question ordering. As we do

not have access to true parameter values, we substitute the values one would obtain using

the choices in all 140 questions.

A 20-question DOSE sequence provides a similar amount of information as about 50

randomly ordered questions, as shown in the top panel of Figure C.1.9 The DOSE esti-

mates of both risk and loss aversion are consistently closer to the final parameter estimate,

indicating—under the assumption that the final estimate closely approximates an individ-

ual’s true parameters—that the procedure provides accurate estimates considerably faster

than selecting questions at random. After 20 questions, the DOSE estimates are almost twice

as close to the final estimate as those under a random question ordering (12% vs. 21–22%).

The bottom panel of Figure C.1 shows that the DOSE estimates are also more highly

correlated with the final estimates, an important feature when seeking to identify correla-

tions between preferences and other population characteristics. After a 20-question DOSE

sequence, the correlations are higher than obtained under the random ordering for both loss

aversion (0.94 versus 0.87) and risk aversion (0.89 versus 0.70).

890 participants come from Frydman et al. (2011) and 30 from Sokol-Hessner et al. (2009).
9For loss aversion, 45 randomly-ordered questions are needed to be as close to the final estimate as 20

DOSE questions. For risk aversion, 55 questions are required.
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Figure C.1: Optimal question selection rapidly leads to accurate estimates.
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Notes: Based on data from Sokol-Hessner et al. (2009) and Frydman et al. (2011). “Optimal Prior” and
“Uniform Prior” refer to DOSE question selection using corresponding priors. “Random” orders questions
randomly, averaging over 100 different random orderings. In the top panel, each line shows the inaccuracy
of Bayesian estimates obtained after each question (starting at question 10). The bottom panel displays
the correlation between the Bayesian estimates obtained after each question and the final estimate. All
parameter values are estimated using a uniform initial prior.

These simulations also show that using the uniform prior is close to optimal for question

selection. We compare the performance of DOSE question selection using a uniform prior

to that using an optimal prior constructed from the distribution of the estimates after 140

questions. To focus on the question selection impacts of the prior, we estimate the parameter

values using a uniform prior in both cases. As shown in Figure 3, both the accuracy and the

correlations are similar whether using the optimal or uniform prior.
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DOSE improves the accuracy of individual-specific estimates for the full distribution of

parameter values, as shown in Figures C.2 and C.3. These figures display the progression

towards the final parameter estimates after asking 10, 20, 50 and 100 DOSE questions.

After just 10 questions, the estimates for both risk and loss aversion are clustered around

the 45 degree line, reflecting a high degree of correlation with the final estimates. There

is no evidence for any of the parameters that the procedure converges faster for particular

parameter values: indicating that accuracy improvements from DOSE are not an artefact of

the particular distribution of preference parameters we observe.

Figure C.2: Correlations between final estimates of the risk aversion parameter and the
estimates after selected rounds.
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Notes: The figure is based on authors’ analysis of data from Sokol-Hessner et al. (2009) and Frydman et
al. (2011). Each panel plots the DOSE estimate (using a uniform prior) of the exponent from the utility
function (1) against the Bayesian estimate after 140 questions.

C.2 Estimates of Choice Consistency

DOSE provides relatively accurate estimates of the choice consistency parameter as well as

risk and loss aversion, as shown in Figure C.4. Compared to the random ordering, the DOSE

estimates are closer to and more highly correlated with the final parameter estimate, and

are more highly correlated with the final estimate throughout the question sequence. Again,

Online Appendix–13



Figure C.3: Correlations between final estimates of the loss aversion parameter and the
estimates after selected rounds.
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Notes: The figure is based on authors’ analysis of data from Sokol-Hessner et al. (2009) and Frydman et al.
(2011). Each panel plots the DOSE estimate (using a uniform prior) of the loss aversion parameter from the
utility function (1) against the Bayesian estimate after 140 questions.

these benefits are similar regardless of whether we use the uniform prior or the “optimal

prior” (discussed in the previous subsection).

The choice consistency estimates take longer to converge to the final estimate than the

other parameters, likely reflecting the fact that several similar questions must be asked to

pin down this parameter. The estimated inaccuracy, for example, after 20 questions is 63%,

much higher than the 21–22% for risk and loss aversion (but much lower than the inaccuracy

of 94% achieved with the random ordering). Similarly, Figure C.5 shows that after 50

questions the individual-specific estimates are not as closely clustered around the 45 degree

line. Again, however, there is no evidence that the accuracy improvements from DOSE are

limited to particular values of the choice consistency parameter.

C.3 Maximum Likelihood Estimation

We also attempted to obtain individual parameter estimates using Maximum Likelihood

Estimation (MLE), however we were frequently unable to estimate parameters for several
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Figure C.4: DOSE elicits accurate estimates for the choice consistency parameter faster than
the random ordering.
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Notes: Based on data from Sokol-Hessner et al. (2009) and Frydman et al. (2011). Left (right) hand panel
shows the inaccuracy (correlation with final estimate) of Bayesian estimates obtained after each question,
under different orders. “Optimal Prior” and “Uniform Prior” refer to DOSE question selection using corre-
sponding priors. “Random” orders questions randomly, averaging over 100 different random orderings. All
parameter values are estimated using a uniform initial prior.

participants.10 As shown in Figure C.6, when using fewer than 40 questions (using the

original order reported in the original datasets), we could not estimate parameter values

for one quarter of the sample, and we could not obtain estimates for all participants even

when using the full set of 140 questions. This failure is particularly striking given that, for

this purpose, we do not exclude any unrealistic values (such as negative parameters) and

that, in a final attempt to obtain an estimate, we initiated the search algorithm with the

final Bayesian estimate of each individual’s parameters. As such these numbers are an over-

estimate of the proportion of participants for whom meaningful estimates could be recovered

in reality; Frydman et al. (2011) in their initial study obtained estimates for only 64 of 83

participants (7 were excluded for other reasons), whereas we report estimates for 82 out of

the 90 participants.

Further, the estimates that were obtained by MLE with a small number of questions

appear much more inaccurate than those from the Bayesian procedure, as shown by the

line plots in Figure C.6. After 140 rounds, the estimates from the different procedures

are, as expected, very similar: the correlation between the final MLE and final Bayesian

10The MLE procedure was implemented using STATA’s modified Newton-Raphson algorithm. Similar
results were obtained using alternative algorithms. For each participant estimation was attempted three times
(each with up to 16,000 iterations), allowing for alternative initial conditions, different stepping procedures
in non-concave regions and relaxing convergence requirements on the gradient vector.
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Figure C.5: Correlations between final estimates of the consistency parameter and the esti-
mates after selected rounds.
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Notes: The figure is based on authors’ analysis of data from Sokol-Hessner et al. (2009) and Frydman et al.
(2011). Each panel plots the DOSE estimate (using a uniform prior) of the choice consistency parameter in
(3) against the Bayesian estimate after 140 questions.

estimates was 0.85 for risk aversion, and 0.95 for loss aversion, while the median distance

between the two estimates was less than 2% (of the Bayesian estimate) for both parameters.

However, the Bayesian estimates are much closer to these final values after many fewer

questions.11 In addition, the Bayesian estimates are generally more accurate than the MLE

estimates that do exist even where no MLE estimate can be obtained at all.12 Not only can

the Bayesian procedure obtain an estimate in those circumstances, those estimates contain

valuable information.

11To ensure comparability between the two sets of estimates, when calculating the distance from the final
estimate we constrain the MLE estimates to the bounds of the prior used for the Bayesian estimates.

12The “jerky” nature of the line relating to the inaccuracy when no MLE estimate is available is explained
by the fact that—particularly after question 40—few participants do not have MLE estimates, with the
precise number varying from round to round. The large spike at round 61, for example, is explained by all
but two participants having MLE estimates available.
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Figure C.6: With a small number of questions the Bayesian procedure provides more accurate
estimates than Maximum Likelihood Estimation.
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D Parameter Recovery Exercise

When participants make mistakes DOSE produces estimates that are about twice as accurate

as traditional risk and loss aversion elicitation mechanisms. We demonstrate this with a

parameter recovery exercise (or Monte Carlo simulation). This is conducted with an entirely

simulated dataset that allows us to both know and control the true parameters governing

(simulated) participant behavior. We first provide a detailed explanation of the procedure

used to simulate DOSE and two other elicitation methods: the double MPL, and Lottery

Menu methods. To understand whether our assumptions about the level of noise in the

survey are reasonable, we then compare simulated choices to real survey data. The simulation

appears to underestimate the level of noise in the survey MPL.

The DOSE estimates are more accurate than other elicitation methods even when the
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utility function is misspecified. Accurate estimates can still be obtained by using the correct

utility function after the fact and, even without re-estimating the results, the DOSE estimates

are highly correlated with the true parameter values. Further, DOSE still performs well when

estimating a utility function with differential curvature across gains and losses, despite the

absence of questions just with losses in our dataset.

D.1 Parameter Recovery Procedure

Simulation Dataset A dataset of 10,000 simulated individuals was generated as follows.

First, we estimated the 140 question DOSE procedure on the 120 participants from Sokol-

Hessner et al. (2009) and Frydman et al. (2011). We then aggregated the 120 individual

posterior distributions to form a joint probability distribution over the three parameters

ρ, λ and µ. The 10,000 participants were then drawn from the resulting distribution. In

addition, to understand the performance of each elicitation method at different levels of

choice consistency, we repeated the simulation assuming each of these simulated individuals

had the same µ, fixed at each ventile of the underlying distribution—this analysis is reported

in Figure 4.

DOSE Simulation We simulate a 20 question DOSE procedure for each individual, with

each binary choice made probabilistically according to the logit probability (3). The possible

question space included 760 questions, allowing for gains in $0.25 increments up to $10, and

losses in $0.5 increments up to $10.

Double Multiple Price List (MPL)

We calculate the expected inaccuracy for the double MPL method using two hypothetical

MPLs. MPL 1 offers participants a choice between a fixed 50:50 lottery between $0 and $10

and a series of fixed amounts. This MPL is used to elicit the estimate of the CRRA coefficient

ρ. MPL 2 offers participants a choice between a 50:50 lottery between a loss of $10 and a

gain of $10 and a series of fixed amounts. This second MPL is used to obtain the estimate

of the loss aversion parameter λ. In both MPLs we enforce (in-line with the implementation

in the surveys) that individuals could only switch once, and that individuals do not choose

dominated options: the left-hand side of MPL (the lottery) is chosen in the first row and the

right-hand side (the fixed amount) is chosen in the last row.

The row in which a participant first chooses the fixed amount (the right hand side) in MPL

1 implies a range of certainty equivalents and CRRA coefficients, as shown in Table D.1.

We use the certainty equivalent at the midpoint of this range and the associated CRRA

coefficient.
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Table D.1: Hypothetical MPL 1 used to estimate ρ

Left Hand Right Hand CRRA Estimated

Choice Choice Range ρ

50% of $0, 50% of $10 $0 n.a. n.a.

50% of $0, 50% of $10 $1 ρ < 0.30 0.23
...

... 0.30 < ρ < 0.43 0.37
...

... 0.43 < ρ < 0.58 0.50
...

... 0.58 < ρ < 0.76 0.66
...

... 0.76 < ρ < 1.00 1.57
...

... 1.00 < ρ < 1.36 1.16
...

... 1.36 < ρ < 1.94 1.61
...

... 1.94 < ρ < 3.11 1.66

50% of $0, 50% of $10 $9 3.11 < ρ < 6.58 1.66

50% of $0, 50% of $10 $10 6.58 < ρ 1.66

Notes: “CRRA range” is the implied range of CRRA coefficients implied by the choice of each lottery. “Estimated
ρ” is the estimated value of the CRRA coefficient associated with the choice of each lottery used in the calculation
of expected inaccuracy. Neither value is defined in the first row because the design does not allow the right hand
side to be selected.

Table D.2: Hypothetical MPL 2 used to estimate λ

Left hand Right hand

choice choice

50% of -$10, 50% of $10 -$10

50% of -$10, 50% of $10 -$9
...

...
...

...

50% of -$10, 50% of $10 $9

50% of -$10, 50% of $10 $10

Similarly, the row in which a participant first chooses the fixed amount (the right-hand

side) in MPL 2 implies a range of certainty equivalents, as shown in Table D.2. We use the

certainty equivalent at the midpoint of this range and use the estimated CRRA coefficient ρ̂

estimated in MPL 1 to obtain the estimated loss aversion parameter, λ̂. For comparability

with the DOSE estimates, we truncate the range of λ̂ and ρ̂ to match the range of the prior

used in the DOSE procedure.

The procedure for simulating behavior on these two MPLs was as follows. For each row
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r, the probability that a simulated individual defined by the parameter vector (ρ, λ, µ) first

chooses the right hand side of the MPL in row r is calculated. This probability is defined by

the logit probability (see (3)) comparing the lottery to the fixed amount offered in row r. To

translate these binary choices into a probability distribution over the set of rows in the MPL

we assume that individuals work either sequentially down or up an MPL, each with 50%

probability. Suppose they work down the MPL. Then they first consider the choice between

the lottery and the fixed amount in the first row in which they can choose the fixed amount

(row 2 in our implementation). If they choose the fixed amount, they will always prefer the

fixed amount lower in the MPL: thus this row is the “switching row”. If, on the other hand,

they prefer the lottery then they will move to the next row and consider the next binary

choice. Alternatively, individuals may choose to work up the MPL by first considering the

bottom row of the MPL, then the second-bottom, etc.

Now consider a MPL with R rows in which an individual can switch. Define the proba-

bility that the lottery is chosen in row r by individual i as qir. This probability is defined by

ρ, µ and, when losses are involved, λ. For simplicity we suppress the i indices. Define the

probability row r is the switching row working down the MPL as pDr , and working up the

MPL as pUr . Then these probabilities are given by:

pDr = (1− qr)
r−1∏
s=1

qs and

pUr = (qr−1)
R∏
s=r

(1− qs)

The expected inaccuracy for any parameter θ is then given by:

E[|θ̂r − θ|] =
R∑
r=1

(
0.5pDr + 0.5pUr

)
|θ̂r − θ|

where θ̂r is the estimated parameter associated with switching in row r. As discussed above,

for ρ this is implied by the midpoint of the certainty equivalents defined by the switching

row. For λ the value is defined both by the midpoint of the certainty equivalent and the

estimated ρ̂ from MPL 1.

Risky Project In the risky project, developed by Gneezy and Potters (1997), participants

are given an endowment of $2 and offered the chance to invest any amount they choose in

a risky project. Any money they choose not to invest they keep. With 40% probability the

project is successful and the participant receives three times the amount they invested (plus
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any money they chose not to invest). If the project fails, they lose their investment.

The procedure for the simulation was as follows. A participant starts by considering a

choice between investing $0 and investing the full $2, with the probability of each choice

defined by the logit function (3). They then compare the winner of this initial choice ($0

or $2) to investing $1 (half the possible investment). If they choose $0, they invest $0. If

they choose $2, they then make sequential comparisons between lower possible investment

amounts, using increments of $0.20. So they first compare $2 to $1.80—if they choose $2,

then they stop and invest $2. If they choose $1.80, they compare $1.80 to $1.60 etc, and

so on in increments of $0.20. Similarly, if they choose $1 they then sequentially compare

lower amounts, starting with $1 vs $0.20. The use of increments of $0.20 captures the fact

that, as we will see in the following sub section, the distribution of participants’ investments

in our survey data appears discrete rather than continuous. The results are similar using

alternative increments.

This procedure produces a probability distribution for each individual i, over eleven

possible investment amounts m ranging from $0 and $2 in increments of $0.20—that is,

m ∈ M = {0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2}—with the probability of investing m

given by pm. The amount of points invested (m) defines an estimated ρ̂m. To ensure

comparability with the DOSE estimates, we then truncate the estimated parameters to the

range defined by the Sokol-Hessner-Frydman distribution. The estimated inaccuracy is then

given by:

E[|ρ̂− ρ|] =
M∑
m

pm × |ρ̂m − ρ|

Lottery Menu In the lottery menu procedure, developed by Eckel and Grossman (2002),

participants are offered a choice between multiple lotteries over gains. We calculate the

expected measurement error for the menu of six 50:50 lotteries presented in Table D.3. This

implementation is based on the menu used by Dave et al. (2010), adjusted so that the largest

prize is $10 (for comparability with the other elicitation procedures). The first lottery is a

safe option (it has zero variance), while the subsequent lotteries increase in both expected

value and variance.

The choice of lottery implies a range of possible CRRA coefficients, as shown in the

penultimate column of Table D.3. For lotteries 2–5 we estimate the estimated CRRA coef-

ficient ρ̂ as the midpoint of this range. Since the midpoint is undefined for lotteries 1 and

6, for these lotteries we use the end-point of the range. To ensure comparability with the

DOSE estimates, we then truncate the estimated parameters to the range defined by the
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Table D.3: Choices in Simulation of Lottery Menu Procedure

Low High CRRA Estimated

Prize Prize Range ρ

Lottery 1 4.00 4.00 ρ < −2.46 0.20

Lottery 2 3.43 5.14 −2.46 < ρ < −0.16 0.20

Lottery 3 2.86 6.29 −0.16 < ρ < 0.29 0.20

Lottery 4 2.29 7.43 0.29 < ρ < 0.50 0.40

Lottery 5 1.71 8.57 0.50 < ρ < 1.00 0.75

Lottery 6 0.29 10.00 1 < ρ 1.00

Notes: Lottery menu choices taken from Dave et al. (2010), adjusted so that maximum prize is $10. “CRRA
range” is the implied range of CRRA coeffcients implied by the choice of each lottery. “Estimated ρ” is the
estimated value of the CRRA coefficient associated with the choice of each lottery used in the calculation
of expected inaccuracy.

Sokol-Hessner-Frydman distribution.

The procedure for the simulation was as follows. Consider a menu over a set of lotteries

l1, l2, ..., lL. We define a probability distribution over the set of lotteries by assuming that

individuals make a series of binary choices in which they compare the set of lotteries in

order. That is, they first compare lottery 1 with lottery 2, making a choice according to the

logit probability. They then compare the winner of that choice with lottery 3, and then the

winner of the latter choice with lottery 4. The procedure is repeated until lottery L.

We define a probability distribution over the full lottery menu for each participant i as

follows. For two lotteries l, k let qil,k be the probability that i chooses l when faced with a

binary choice between l and k. This probability is defined by the logit function (3), and as

such depends on the participant’s value of ρ and µ; for simplicity we do not display these

parameters or the i index in the following. Define the probability that lottery l is chosen

after L choices as pLl . Then p11 = q1,2 and for all other l, L:

pLl =
l−1∑
k=1

ql,kp
l−1
k ×

L∏
m=l+1

ql,m

The probability distribution over the choice from the set of lotteries is then {pL1 , pL2 , ..., pLL}.
Defining ρ̂l as the estimated CRRA coefficient associated with a choice of lottery l, the

expected inaccuracy is given by:

E[|ρ̂− ρ|] =
L∑
l=1

pLl × |ρ̂l − ρ|
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We also implemented an alternative simulation procedure for the Lottery Menu. Under

this alternative, choice occurred according to to a multinomial logit probability distribution.

That is, for each possible choice k = 1, ..., 6:

Prob(Choice = k) =
exp(EUk)

µ∑6
l=1 exp(EUl)

µ

where EUk is the expected utility of lottery k.

The simulation results for the Lottery Menu procedure were similar to that for the risky

project. Using our main simulation (presented in Table 1), the average inaccuracy was 35%

(or 42% using the multinomial logit function for choice), and the correlation with the true

parameter was 0.29 (0.37). For the lowest consistency ventile (as in Figure 4) the average

inaccuracy was 41% (55%) and in the highest ventile 27% (29%).

D.2 Validating the Simulation with Survey Data

In this section we compare the estimated simulated responses for the risky project and MPL

measures to the real responses from our own survey data.

Multiple Price Lists In practice, choice data in the MPL is likely noisier than our sim-

ulations assume. To estimate the relative amount of noise in the survey, we compare sim-

ulated and real responses for three additional MPLs—a double MPL procedure (but with

different payoffs), and an additional risk aversion MPL as implemented in Chapman et al.

(2023a).13 Two of these MPLs elicited risk aversion, offering participants a choice between

fixed amounts and 50:50 lotteries over gains: a lottery over $0 and $5 and a lottery between

$1 and $4 respectively. The third MPL, which elicited loss aversion, offered participants a

choice between fixed amounts and a 50:50 lottery between a loss of $5 and a gain of $5.

The comparison of the real and simulated responses suggests that the level of measure-

ment error in our simulation was lower than that in the survey. The proportion of FOSD

responses in the loss aversion MPL is much lower in this simulation than the real data:

20% rather than 37%. Further, the correlation between the certainty equivalents in the risk

aversion MPLs—which is higher in the presence of less measurement error (Gillen et al.,

2019)—is higher in the simulation: 0.73 vs. 0.69. In addition, a significant degree of the

correlation in the survey data is explained by participants repeatedly switching at the rows

at the end of the MPLs: choices which are consistent, but unlikely to be accurate given the

13These MPLs have a different structure from those used in the results in Table 1 and Figure 4, but the
simulation methodology is the same.
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extreme parameter values they imply. Excluding such participants the correlation between

the two MPLs falls to 0.50 in the survey, compared to 0.61 in the simulated data.

The reason that the simulations underestimate the measurement error in the survey MPLs

appears to be that we do not account for participants’ use of rules-of-thumb. As shown in

Figure D.1, compared to our simulation participants in the survey were more likely to switch

in rows of the MPL that are especially salient—such as the first or last rows, or those referring

to the midpoint of the lottery.14 These choices may be capturing framing effects or heuristics

in the face of the large amount of information in an MPL—the simulations may thus miss

an important source of error in the MPL by not accounting for such effects.

Risky Project Our simulation captures the fact that the distribution of investment amounts

in the risky project is quite discrete, and also that most investments are at likely focal values

($0, $1, or $2)—see Figure D.2. However, as with the MPLs, if anything the simulation

predicts less “heaping” at particularly salient values than in the real data, and hence may

underestimate the degree of measurement error.

D.3 Misspecification of the Utility Function

The DOSE estimates are robust to misspecification of the utility function. We run DOSE

on the same 10,000 simulation subjects—each of whom has CRRA utility—but assuming a

CARA utility function in the question selection procedure. We then compare the correlation

between the risk aversion and loss aversion parameters under the different procedures, and

demonstrate how the data collected can be re-estimated to elicit accurate CRRA utility

parameters.15

Misspecifying the utility function does not lead to a loss of accuracy, as shown in Ta-

ble D.4. For risk aversion, we can recover the same estimates by re-estimating the correct

utility function after the data collection process. For loss aversion, very similar estimates

are obtained even when the CARA function is incorrectly used.

Further, the assumptions over parametric form are unlikely to be critical if researchers

are interested in identifying correlations rather than the level of the risk and loss aversion

14Amounts with zero choices in these histograms reflect the fact that, unlike the hypothetical MPLs in the
previous section, the fixed amounts in these MPLs were not at regular intervals meaning that some values
could not be chosen by the participants.

15Specifically we run DOSE on the simulation dataset assuming the following exponential (CARA) utility
function:

u(x, γi, λi) =

{
1−e−γix

γi
for x ≥ 0

λi

(
eγix−1
γi

)
for x < 0

(5)

where λ represents loss aversion and γ captures risk aversion.

Online Appendix–24



Figure D.1: MPL endpoints are chosen more frequently in real data.
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Notes: The figure displays the real and simulated responses to the two risk aversion MPLs in Chapman et
al. (2023a).

estimates. Even without re-estimating, the Spearman correlation between the estimated

CARA parameters and the true (CRRA) parameter values is very high—and notably higher

than the correlations for either the MPL or the risky project procedures reported in Table 1.
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Figure D.2: Risky project simulation captures high proportion of focal value response.
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Notes: The figure displays the real and simulated responses to the risky project measure in Wave 1 of the
survey used in this paper.

Table D.4: DOSE estimates are robust to utility function misspecification.

Average inaccuracy Correlation with true value

10 question 20 question 10 question 20 question

Risk Aversion

CRRA (Not misspecified) 22% 16% 0.65 0.78

CARA (Misspecified) n.a. n.a. 0.59 0.74

CARA re-estimated as CRRA 21% 17% 0.65 0.76

Loss Aversion

CRRA (Not misspecified) 22% 16% 0.85 0.90

CARA (Misspecified) 24% 18% 0.83 0.90

CARA re-estimated as CRRA 23% 17% 0.84 0.90

Notes: Inaccuracy is defined as the absolute distance from the true parameter value displayed as a percent-
age of the true value. “Correlation with true value” displays the Spearman correlation coefficient between
the true parameter and the estimated parameters.
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E Robustness Checks

This section presents extended survey results and robustness tests. In the first subsection,

we demonstrate that our main results are robust to misspecification. We then examine the

DOSE choice data, and show that the ranking of individuals’ preferences is very similar when

re-estimating with alternative utility or error specifications. The third sub-section then shows

that our main conclusions are robust when using these alternative estimates. The fourth sub-

section includes additional regression results, showing that the correlation between cognitive

ability and economic preferences is robust to alternative definitions of control variables, and

also robust to removing participants least likely to be paying attention. The final subsection

(E.5) shows that DOSE choice consistency measure can identify inattention (Section 5.2)

even when restricting the sample to those answering quickly—a standard way of identifying

inattention in the survey.

E.1 Additional Tests of Fatigue and Inattention

Neither survey fatigue or inattention appear to explain our results. The pattern of economic

preferences does not change according to the position of the DOSE module, suggesting that

participants did not become fatigued later in the survey. Nor do participants appear to choose

more randomly later in the DOSE module, as would be expected if they get bored of the

questions. There is also little evidence that participants get tired and click through the survey

quickly without paying attention: there is little correlation between response time and our

three economic preference parameters. Further, we observe the same relationships between

economic preferences and individual characteristics when excluding the fastest participants.

Thus, boredom causing unusually fast choice, which then leads to our results does not seem

a plausible explanation for our conclusions.

It does not appear that survey fatigue affected our estimate of any of the four DOSE

parameters, as shown in Figure E.1. The position of the two DOSE modules was random-

ized across participants, and could appear in the third, fourth, fifth or sixth position in

the survey (the two modules always appeared together). The distribution of parameters is

similar regardless of the position in both waves of the survey. Thus it does not appear that

participants’ behavior changed when they took DOSE further into the survey, suggesting

that fatigue is not a major factor in our results.

We can also look for signs of fatigue within the DOSE module itself by observing that if

participants start choosing randomly then the Bayesian prior will be “surprised” more often.

That is, at each point in the question selection process, DOSE’s prior has an alternative that

it thinks the participant will choose. When the participant chooses an option the procedure
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thinks should only be a 30% chance, we encode that as 50 − 30 = 20 percentage points

surprising. If, on the other hand, the participant chooses an option the procedure things is

70%, then we encode this as 50−70 = −20% surprising. If participants are getting fatigued,

we would expect them to start choosing randomly, that is, make more surprising choices (on

average) later in the module.

As can be seen in Figure E.2, there is no trend of increasing surprise towards the end of

either module. Surprise is, on average, slightly lower at the end of the time preference module,

suggesting that if anything, participants are making more consistent choices towards the end

of the procedure than at the beginning. Notably, the procedure is particularly surprised

in question 4, when participants are presented with a question involving losses for the first

time—reflecting the fact that, as we detail in depth in Chapman et al. (forthcoming), we

observe much lower levels of loss aversion in our general population sample than in prior

laboratory studies. Since our prior was based on those laboratory studies, the procedure

“expected” a much higher degree of loss aversion than was actually the case.

While there is little evidence of survey fatigue, it is possible that some participants were

inattentive throughout the survey. We examine this possibility next by reanalyzing our

data while leaving out those who were most likely to have given up and rushed through the

survey. One might expect that bored or inattentive participants would just click through

screens quickly but, as shown in Figure E.3, our results are largely unchanged when removing

the fastest responses. In this figure, we first look at the slowest 80% of participants, then

the slowest 60%, and so on. The distributions overlap almost entirely. The parameter

distributions are similar, suggesting that neither confusion nor inattentiveness, nor giving

up, is likely to explain many of the choices we see.

E.2 DOSE Choice Data and Model (Mis-)Specification

Our results are underpinned by a clear set of choices, and hence re-estimating with alternative

functional forms for utility or choice does not significantly affect our results. Our estimates

of each of risk and loss aversion are highly correlated when re-estimating using CARA utility,

allowing differential risk aversion over gains and losses, or when implementing either a probit

error specification or the random parameter model suggested by Apesteguia and Ballester

(2018). Consequently, as we show in the following subsection, alternative specifications make

little difference to correlations between these characteristics and cognitive ability.

In Table E.1 we classify participants according to their estimated parameter values—for

instance, a participant is “loss averse, risk averse” if they have both λ > 1 and ρ < 1—

and examine how the frequency of lotteries accepted varies according to the expected value

Online Appendix–28



Table E.1: DOSE classification reflects clear pattern of choices.

% Lotteries Accepted

Lotteries with Losses Lotteries with Only Gains

EV≤Sure EV>Sure EV≤Sure EV>Sure

Classification by DOSE

Loss averse, risk averse 14% 46% 8% 41%

Loss averse, risk loving 2% 51% 53% 98%

Loss tolerant, risk averse 82% 99% 5% 41%

Loss tolerant, risk loving 82% 100% 77% 96%

Notes: The table displays the unweighted percentage of lotteries accepted, categorizing participants ac-
cording to their estimated DOSE parameters. “EV”=Expected Value of lottery and “Sure”= the sure
amount offered in each lottery.

(relative to a sure amount) and whether the lottery involved a loss. The pattern of behavior

is as would be expected. Loss tolerant participants nearly always choose lotteries with losses,

and risk loving participants nearly always choose lotteries over gains. Loss averse and risk

averse participants, in contrast, are much less likely to accept such lotteries.

In fact, our DOSE parameter estimates are highly correlated with non-parametric pref-

erence measures constructed from the DOSE data. The Spearman correlation between the

DOSE risk aversion parameter and the percentage of lotteries accepted offering only poten-

tial gains is 0.92. The DOSE loss aversion parameter is correlated 0.90 with the percentage

of mixed lotteries accepted. And the DOSE patience parameter is correlated 0.84 with the

share of longer-dated payments accepted in the time preference DOSE module.

Given these facts, it is not surprising that our estimates of participants’ preferences are

similar when we re-estimate the DOSE parameters with alternative parametric assumptions.

We re-estimate risk and loss aversion using first a CARA utility function, and then a CRRA

utility function in which we allow for differential utility curvature between gains and losses.

The Spearman correlation between the estimates of risk aversion (over gains) from these

specifications and our main specification is 0.98 in both cases. For loss aversion it is 0.98

when assuming CARA utility, and 0.76 when allowing for differential curvature—lower, as

we might expect given that part of behavior over losses is now captured by the additional

parameter, but still highly correlated with our main estimates. Consequently, as we will see

below, our estimated correlations with cognitive ability are very similar when using these

alternative utility functions to construct parameter estimates.

To understand whether our logit error function plays an important role in our results, we
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re-estimate the DOSE parameter estimates with a probit error specification (Figure E.4) and

then a random parameter model (Figure E.5). As pointed out by Apesteguia and Ballester

(2018), the logit error function is potentially problematic in the estimation of risk aversion

because the relationship between the level of risk aversion and the probability of accepting

a lottery is non-monotonic—potentially creating issues for identification of the risk aver-

sion parameter. Those non-monotonicities do not affect loss aversion directly because the

difference between the utility of a lottery with a loss and a sure amount is monotonically

decreasing in loss aversion, meaning that higher loss tolerance is associated with an increas-

ing probability of accepting a lottery (for a given level of risk aversion). However, they

could impact our loss aversion estimates indirectly through the risk aversion parameter. As

such, we check whether the error specification we use has a major impact on estimated risk

preferences using both a probit error function and the random parameter model suggested

by Apesteguia and Ballester (2018).

First, Figure E.4 shows our results for risk and loss aversion using a probit (rather than

logit) error function. That is, we assume that the probability that the lottery is chosen

follows a standard normal distribution over the utility difference between the lottery and

sure amount. As we can see, the estimates are very highly correlated.

Second, we implement the RPM, by estimating risk aversion and then, in a second stage,

estimated loss aversion. We choose this two stage approach as, first, implementing a RPM in

a two parameter model is not straightforward (Apesteguia and Ballester (2018) examine only

a one parameter model) and, second, it is only risk aversion that is directly affected by the

non-monotonicities (as discussed in the previous paragraphs). The risk aversion parameter

is largely identified using questions where the lottery contains only gains. As such we used a

RPM on those questions to identify the risk aversion parameter. We then fix individual-level

risk aversion parameters using the RPM estimates, and implement the logit specification to

estimate loss aversion using the remaining questions—those that ask participants to choose

between a lottery with both a loss and a gain and a sure amount of zero.

Our results are also similar when implementing the RPM, as shown in Figure E.5. The

main difference is that, as shown in the left-hand panel, the RPM risk aversion estimates

are (almost) uniformly lower numerically than when using the logit specification—but the

estimates are extremely highly correlated (0.98) with those from the logit specification. These

numerical differences in the risk aversion parameter do not, however, significantly impact

our loss aversion estimates, as shown in the right hand panel. The correlation with our main

estimates is again very high (0.99).

Online Appendix–30



E.3 Robustness to Possible Misspecification

This subsection demonstrates that our findings regarding the the relationship between eco-

nomic preferences and cognitive ability are robust to possible misspecification of the utility

function or the error specification used to obtain the DOSE parameter estimates. As dis-

cussed in the previous section, DOSE estimates are underpinned by a clear pattern of choices,

and hence alternative functional forms do not significantly change the ranking of individu-

als’ preferences. Consequently, our findings regarding cognitive ability are largely unchanged

when re-estimating the results using alternative parametric forms.

There are clear differences in the pattern of choices according to level of cognitive ability.

Consistent with the correlations presented in Table 2, high cognitive ability participants

are more likely to accept lotteries offering only gains, less likely to accept mixed lotteries

(i.e., those over both gains and losses), and more likely to accept later-dated payments. In

particular, participants in the top tercile of cognitive ability accepted 46% of lotteries over

only gains, compared to 40% for those in the middle tercile, and 46% for those in the bottom

tercile. The share of mixed lotteries accepted was 58%, 68%, and 70% for those in the top,

middle, and bottom tercile respectively. The share of later-dated payments accepted was

78% for the top tercile, 72% for the middle tercile, and 67% for the bottom tercile.

Figure E.6 shows that the correlation between cognitive ability and each of risk and loss

aversion is similar when allowing for the alternative functional forms for utility or the error

process discussed in the previous subsection. Specifically, the figure displays the coefficients

from estimating the regressions in Table 2 with no controls (that is, a univariate correlation)

and with the full set of controls, for both risk aversion and loss aversion. We can see that the

estimated coefficients are very similar under the different specifications, both in magnitude

and statistical significance. The stability of these estimates are perhaps not surprising, given

the pattern of choices discussed in the previous paragraph. However, in other settings, the

ability to re-estimate results ex post, if the parametric form used for question selection turns

out to be inappropriate, may be a valuable tool for researchers.

Table E.2 replicates the regressions in Table 2 allowing for present bias. The correla-

tions between each characteristic and discounting are similar regardless of whether we allow

for present bias. Present bias is, similarly to our other preference estimates, strongly cor-

related with cognitive ability—those with higher cognitive ability are less present biased.

However, there are some differences between discounting and present bias when examining

the relationship with other variables. In contrast to discounting, there is no evidence of a

relationship between present bias and education after controlling for cognitive ability but

there is a correlation with income. Further, age appears strongly related to discounting, but

not to present bias.
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Table E.2: Cognitive ability is strongly correlated with discounting and present bias.

No Present Bias With Present Bias

Patience (δ) Patience (δ) Present Bias (β)

Univariate Multivariate Univariate Multivariate Univariate Multivariate

Correlation Regression Correlation Regression Correlation Regression

Cognitive Ability 0.18∗∗∗ 0.18∗∗∗ 0.17∗∗∗ 0.15∗∗∗ 0.17∗∗∗ 0.14∗∗∗

(0.029) (0.028) (0.030) (0.029) (0.027) (0.029)
Education 0.17∗∗∗ 0.11∗∗∗ 0.16∗∗∗ 0.11∗∗∗ 0.11∗∗∗ 0.03

(0.037) (0.038) (0.036) (0.038) (0.032) (0.033)
Income 0.09∗∗∗ -0.02 0.10∗∗∗ -0.00 0.15∗∗∗ 0.10∗∗

(0.036) (0.040) (0.035) (0.040) (0.039) (0.047)
Male -0.02 -0.05∗ -0.01 -0.04 0.05 0.01

(0.035) (0.033) (0.035) (0.032) (0.033) (0.032)
Age 0.18∗∗∗ 0.18∗∗∗ 0.15∗∗∗ 0.15∗∗∗ 0.01 0.00

(0.036) (0.036) (0.035) (0.035) (0.035) (0.035)
Married 0.09∗∗∗ 0.03 0.08∗∗∗ 0.03 0.05 0.00

(0.035) (0.038) (0.035) (0.038) (0.033) (0.039)

N 2,000 2,000 2,000 2,000 2,000 2,000

Notes: ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5%, and 10% level. Robust standard errors,
in parentheses, come from a standardized regression. The first, third, and fifth columns report
univariate correlations. The second, fourth, and sixth report the coefficient from a multivariate
regression.

E.4 Robustness of Correlations with Economic Preferences

In this subsection we present extended versions of the correlation tables in Section 5, and

robustness tests of the relationship between cognitive ability and economic preferences. The

relationships between economic preferences and cognitive ability are robust to controlling

for other individual characteristics, including both income and education. Indeed, most of

the correlation between risk and loss aversion and education is explained by differences in

cognitive ability.

In Table E.3 we compare the correlations when using the DOSE measure of risk aver-

sion (column 1) and time preference (column 6) with the other risk and time measures in

our survey. For risk aversion these alternative measures included two MPL modules, one

relating to Willingness-to-Pay for a lottery (which we use in Section 5.2), and one relating

to Willingness-to-Accept, as well as a risky project measure (Gneezy and Potters, 1997).

For time preferences, as discussed in Section 2, we included two MPLs as well as the DOSE

module.

The pattern of correlations is much stronger when using the DOSE measure than either

MPL measure. As discussed in Section 5.2, the weak correlations with the MPL (WTP)
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measure are consistent with attenuation bias due to higher measurement error in the MPL.

The weak pattern of correlations with the MPL (WTA) measure could also be explained

by attenuation bias or could result from the WTA measure capturing a different dimension

of risk preferences to the other risk measures in our survey (see Chapman et al., 2023b).

The risky project measure, which may suffer from less attenuation bias than the MPLs

due to its simplicity, identifies a similar pattern of correlations to the DOSE risk aversion

measure. The correlations between the risky project measure and individual characteristics

consistently have the same sign, degree of statistical significance and magnitude as those

with the DOSE estimates. The main exception are the correlations with cognitive ability,

where DOSE identifies much stronger correlations than the project measure.
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Figure E.1: The parameter distributions are similar regardless of the position in the survey.
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Figure E.2: No evidence of fatigue within the DOSE module.
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Figure E.3: Distributions are similar when removing participants with short response times.
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Figure E.4: Using the probit error specification leads to very similar parameter estimates.
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Notes: The figure displays the distribution of the loss and risk aversion estimates under the logit error
specification used in the main estimates (x-axis) and a probit error specification (y-axis).

Figure E.5: Parameter estimates are similar using a random parameter model.
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Notes: The left-hand panel of the figure displays the DOSE estimates of risk aversion using only lotteries
over gains under the Random Parameter Model (RPM; y-axis) and Random Utility Model (RUM; x-axis).
The right-hand panel displays estimates of loss aversion from the same two models.
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Figure E.6: Correlations between risk preferences and cognitive ability are robust to mis-
specification of utility function or error process.
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Notes: The figure displays the correlations between cognitive ability and each of risk and loss aversion, using
preference parameters from the risk-loss DOSE module. “No controls” represents univariate correlations,
while “with controls” includes the set of control variables in Table 2. Bars represent 90% confidence intervals.
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Table E.4: Results of multivariate regressions in Table 2 are similar using categorical control
variables.

Risk Aversion (1− ρ) Loss Aversion (λ) Patience Choice Consistency

Cognitive Ability:

Middle Tercile -0.18** -0.18** -0.02 -0.03 0.19** 0.17** 0.26*** 0.23***

(0.078) (0.078) (0.082) (0.080) (0.081) (0.080) (0.085) (0.083)

Top Tercile -0.49*** -0.43*** 0.36*** 0.28*** 0.48*** 0.38*** 0.40*** 0.36***

(0.071) (0.075) (0.083) (0.084) (0.080) (0.082) (0.078) (0.075)

Age:

36–50 0.04 0.04 -0.23** -0.24** 0.15 0.13 0.09 0.02

(0.096) (0.096) (0.106) (0.104) (0.110) (0.108) (0.097) (0.095)

51–64 0.06 0.08 -0.32*** -0.35*** 0.34*** 0.30*** 0.21** 0.14

(0.092) (0.093) (0.092) (0.092) (0.098) (0.097) (0.094) (0.094)

65+ 0.01 -0.01 -0.26*** -0.28*** 0.46*** 0.48*** 0.13 0.06

(0.094) (0.095) (0.095) (0.096) (0.098) (0.101) (0.100) (0.100)

Male -0.12* -0.11* 0.08 0.08 -0.11* -0.10 -0.06 -0.05

(0.062) (0.061) (0.067) (0.065) (0.066) (0.063) (0.067) (0.064)

Education:

Some College -0.09 -0.01 0.30*** 0.04

(0.075) (0.078) (0.086) (0.075)

4-year College -0.09 0.16* 0.26*** 0.13*

(0.078) (0.082) (0.084) (0.073)

Income:

2nd Quartile 0.08 -0.03 -0.14 0.06

(0.096) (0.092) (0.103) (0.094)

3rd Quartile 0.01 0.19* -0.12 -0.05

(0.095) (0.099) (0.115) (0.087)

4th Quartile -0.25** 0.22** 0.10 -0.11

(0.101) (0.108) (0.099) (0.094)

Unreported -0.06 0.34*** -0.01 -0.30**

(0.115) (0.120) (0.108) (0.120)

Married 0.03 0.07 0.07 0.18***

(0.070) (0.075) (0.078) (0.067)

N 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000

Notes: ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5%, and 10% level. All dependent vari-
ables are standardized. Robust standard errors are displayed in parentheses.

The results are similar when including all characteristics as categorical variables, to allow

for potential non-monotonic relationships, as shown in Table E.4. Again, we see a strong

relationship between cognitive ability and each of the DOSE-elicited parameters in each

specification.

The results in Table 2 suggest that much of the correlation between education and both

risk and loss aversion is explained by cognitive ability. To test that it is cognitive ability, and

not one of the other controls, that weakens the association we carry out additional specifica-

tions adding the variables one at a time—see Table E.5. For each preference parameter, we
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start by adding education and income separately, then both together and, finally, add cog-

nitive ability. It is only when cognitive ability is added that the magnitude of the coefficient

with education diminishes significantly—suggesting that cognitive ability jointly determines

educational outcomes and these two preferences.

Online Appendix–41



T
ab

le
E

.5
:

M
u
ch

of
th

e
re

la
ti

on
sh

ip
b

et
w

ee
n

ed
u
ca

ti
on

an
d

ri
sk

p
re

fe
re

n
ce

s
is

ex
p
la

in
ed

b
y

d
iff

er
en

ce
s

in
co

gn
it

iv
e

ab
il
it

y.

R
is
k
A
v
er
si
o
n
(1
−
ρ
)

L
o
ss

A
v
er
si
o
n
(λ

)
P
a
ti
en

ce
C
h
o
ic
e
C
o
n
si
st
en

cy

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0
)

(1
1
)

(1
2
)

(1
3
)

(1
4
)

(1
5
)

(1
6
)

C
o
g
n
it
iv
e
A
b
il
it
y
:

M
id
d
le

T
er
ci
le

-0
.1
8
*
*

-0
.0
3

0
.1
7
*
*

0
.2
3
*
*
*

(0
.0
7
8
)

(0
.0
8
0
)

(0
.0
8
0
)

(0
.0
8
3
)

T
o
p
T
er
ci
le

-0
.4
3
*
*
*

0
.2
8
*
*
*

0
.3
8
*
*
*

0
.3
6
*
*
*

(0
.0
7
5
)

(0
.0
8
4
)

(0
.0
8
2
)

(0
.0
7
5
)

E
d
u
ca

ti
o
n
:

S
o
m
e
C
o
ll
eg

e
-0
.1
7
*
*

-0
.1
6
*
*

-0
.0
9

0
.0
4

0
.0
4

-0
.0
1

0
.3
5
*
*
*

0
.3
5
*
*
*
0
.3
0
*
*
*

0
.1
1

0
.0
9

0
.0
4

(0
.0
7
7
)

(0
.0
7
6
)

(0
.0
7
5
)

(0
.0
7
8
)

(0
.0
7
8
)

(0
.0
7
8
)

(0
.0
8
2
)

(0
.0
8
4
)

(0
.0
8
6
)

(0
.0
8
0
)

(0
.0
7
7
)

(0
.0
7
5
)

4
-y
ea

r
C
o
ll
eg

e
-0
.2
8
*
*
*

-0
.2
0
*
*
*

-0
.0
9

0
.3
2
*
*
*

0
.2
4
*
*
*

0
.1
6
*

0
.4
0
*
*
*

0
.3
6
*
*
*
0
.2
6
*
*
*
0
.2
3
*
*
*

0
.2
2
*
*
*

0
.1
3
*

(0
.0
7
7
)

(0
.0
7
6
)

(0
.0
7
8
)

(0
.0
7
7
)

(0
.0
8
1
)

(0
.0
8
2
)

(0
.0
8
0
)

(0
.0
8
1
)

(0
.0
8
4
)

(0
.0
7
4
)

(0
.0
7
4
)

(0
.0
7
3
)

In
co

m
e:

2
n
d
Q
u
a
rt
il
e

0
.0
4

0
.0
6

0
.0
8

0
.0
0

-0
.0
2

-0
.0
3

-0
.0
7

-0
.1
2

-0
.1
4

0
.1
0

0
.0
8

0
.0
6

(0
.0
9
9
)

(0
.0
9
8
)

(0
.0
9
6
)

(0
.0
9
1
)

(0
.0
9
1
)

(0
.0
9
2
)

(0
.1
0
8
)

(0
.1
0
5
)

(0
.1
0
3
)

(0
.0
9
4
)

(0
.0
9
4
)

(0
.0
9
4
)

3
rd

Q
u
a
rt
il
e

-0
.0
7

-0
.0
1

0
.0
1

0
.2
7
*
*
*

0
.2
1
*
*

0
.1
9
*

0
.0
0

-0
.1
0

-0
.1
2

0
.0
2

-0
.0
3

-0
.0
5

(0
.0
9
7
)

(0
.0
9
6
)

(0
.0
9
5
)

(0
.0
9
9
)

(0
.0
9
8
)

(0
.0
9
9
)

(0
.1
1
8
)

(0
.1
1
6
)

(0
.1
1
5
)

(0
.0
8
9
)

(0
.0
8
9
)

(0
.0
8
7
)

T
o
p
Q
u
a
rt
il
e

-0
.3
7
*
*
*
-0
.3
0
*
*
*

-0
.2
5
*
*

0
.3
6
*
*
*

0
.2
6
*
*

0
.2
2
*
*

0
.2
7
*
*
*

0
.1
4

0
.1
0

0
.0
2

-0
.0
7

-0
.1
1

(0
.1
0
0
)

(0
.1
0
1
)

(0
.1
0
1
)

(0
.1
0
2
)

(0
.1
0
7
)

(0
.1
0
8
)

(0
.1
0
1
)

(0
.1
0
4
)

(0
.0
9
9
)

(0
.0
8
9
)

(0
.0
9
4
)

(0
.0
9
4
)

U
n
re
p
o
rt
ed

-0
.0
8

-0
.0
7

-0
.0
6

0
.3
8
*
*
*
0
.3
6
*
*
*
0
.3
4
*
*
*

0
.0
1

-0
.0
0

-0
.0
1

-0
.2
8
*
*

-0
.2
9
*
*

-0
.3
0
*
*

(0
.1
1
5
)

(0
.1
1
5
)

(0
.1
1
5
)

(0
.1
2
2
)

(0
.1
2
2
)

(0
.1
2
0
)

(0
.1
1
1
)

(0
.1
1
0
)

(0
.1
0
8
)

(0
.1
2
5
)

(0
.1
2
5
)

(0
.1
2
0
)

M
a
rr
ie
d

0
.0
3

0
.0
2

0
.0
3

0
.0
6

0
.0
7

0
.0
7

0
.0
6

0
.0
7

0
.0
7

0
.1
8
*
*
*
0
.1
9
*
*
*
0
.1
8
*
*
*

(0
.0
7
1
)

(0
.0
7
1
)

(0
.0
7
0
)

(0
.0
7
5
)

(0
.0
7
4
)

(0
.0
7
5
)

(0
.0
8
1
)

(0
.0
8
0
)

(0
.0
7
8
)

(0
.0
6
8
)

(0
.0
6
9
)

(0
.0
6
7
)

N
2
,0
0
0

2
,0
0
0

2
,0
0
0

2
,0
0
0

2
,0
0
0

2
,0
0
0

2
,0
0
0

2
,0
0
0

2
,0
0
0

2
,0
0
0

2
,0
0
0

2
,0
0
0

2
,0
0
0

2
,0
0
0

2
,0
0
0

2
,0
0
0

N
ot

es
:
∗∗

∗ ,
∗∗

,
∗

d
en

ot
e

st
at

is
ti

ca
l

si
gn

ifi
ca

n
ce

a
t

th
e

1
%

,
5
%

,
a
n

d
1
0
%

le
ve

l.
A

ll
d

ep
en

d
en

t
va

ri
a
b

le
s

a
re

st
a
n

d
a
rd

iz
ed

.
R

o
b

u
st

st
an

d
ar

d
er

ro
rs

ar
e

d
is

p
la

ye
d

in
p

ar
en

th
es

es
.

Online Appendix–42



Tables E.6–E.8 show that we identify similar correlations when restricting the sample

to participants most likely to be paying attention—those classified as having high choice

consistency, or with above median response time in either the DOSE modules or the survey

as a whole.
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Figure E.7: The patterns of correlations in Figure 7 are similar using an alternative definition
of choice consistency.

Cognitive
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Low Consistency

Correlation

DOSE Risky Project MPL Self−Assessment

Notes: Figure repeats the analysis in Figure 7, using the choice consistency variable identified from the full
20-question DOSE sequence. See notes to that figure for more details.

E.5 Choice Consistency and Response Time

Figure E.7 shows that the findings in Figure 7 are robust to using the choice consistency vari-

able identified from both DOSE modules, rather than simply the 10-question time preference

module. The left-hand panel is identical to Figure 7, but the middle- and right-hand panel

now split the same according to this alternative definition of consistent choice. The patterns

are similar, but quite not as clear, consistent with the time preference module providing

more informative estimates of µ.

Figure E.8 shows that the findings in Figure 7 are similar when using non-parameteric

measures of risk aversion from the MPL and risky project elicitations.

We now show that that controlling for choice consistency helps identify a pattern of

correlations even when restricting the sample to those answering very fast—and so who

might be thought to be paying little attention. In the left hand panel of Figure E.9 we

show the pattern of correlations restricting the sample to first those answering the risk MPL

module quickly and in the right hand panel we present the correlations for those answering

the whole survey quickly (quickly being defined as below the respective median). In both

cases we compare the correlations for all participants to those in the high consistency group.

In both panels there is more evidence of correlations after restricting the sample to high

consistency participants. The magnitude of the correlations in frequently higher, and several

emerge as statistically significant once only high consistency participants are considered. The

magnitude of the correlations is, in fact, similar to those in Figure 7, although the standard

errors are larger (explained by the fact the sample is half as large). The choice consistency

measure appears, then, to be distinguishing participants that answer accurately but rapidly—
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Figure E.8: The patterns of correlations in Figure 7 are similar using non-parametric mea-
sures for MPL and risky project elicitations.
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Low Consistency

Correlation

DOSE Risky Project MPL Self−Assessment

Notes: Figure repeats the analysis in Figure 7, using non-parametric measures of risk aversion from the MPL
and risky project elicitations. See notes to that figure for more details.

whose responses include meaningful information—from those that answer quickly due to a

lack of care or attention.
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Figure E.9: Accounting for choice consistency leads to a clearer pattern of correlations even
among participants with low response times.

Cognitive
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Notes: The left panel includes only participants below the median response time on the risk MPL module.
The right panel includes only participants below the median response time on the entire survey. “High
Consistency” refers to those with choice consistency above the median. The survey contained two MPL
measures of risk preference. Correlations are estimated by stacking the two and clustering standard errors
by participant.

F Screenshots

This subsection contains screenshots of all the types of questions analyzed in this paper. Full

design documents and screenshots can be found at hss.caltech.edu/∼snowberg/wep.html.

Figure F.10: DOSE Risk/Loss Aversion Instruction Screen
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Figure F.11: DOSE Risk/Loss Aversion Example Question: Gains Only

Figure F.12: DOSE Risk/Loss Aversion Example Question: Both Gains and Losses

Figure F.13: DOSE Discounting Instruction Screen
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Figure F.14: DOSE Discounting Example Question

Figure F.15: Risky Project Question
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Figure F.16: Multiple Price List to Measure Risk Aversion
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Figure F.17: Multiple Price List to Estimate Discount Rate
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Figure F.18: Multiple Price List Instruction Screen
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Figure F.19: Multiple Price List Practice Screen
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Figure F.20: Multiple Price List Practice Screen with Error Message
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Figure F.21: Qualitative Self-Assessment: Risk Preferences

Figure F.22: Qualitative Self-Assessment: Time Preferences
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